Просмотр сведений о научной статье


Обложка номера

№3 2018

Заголовок

Создание высоковакуумной зоны в аэродинамическом следе за защитным экраном в условиях орбитального полета на высотах H = 250 – 400 км

Авторы

1О.П. Пчеляков, 1В.В. Блинов, 1А.И. Никифоров, 1Л.В. Соколов, 2Л.Л. Зворыкин

Организации

1Институт физики полупроводников имени А. В. Ржанова СО РАН
г. Новосибирск, Российская Федерация
2ПАО «Ракетно-космическая корпорация «Энергия» имени С. П. Королёва»
г. Королев, Московская область, Российская Федерация

Аннотация

На высотах орбитального полета при поперечном обтекании защитного экрана невозмущенным набегающим потоком в аэродинамическом следе за ним существует стабильная естественная область глубокого вакуума. В этой области «космического» вакуума достигаются уровни разрежения порядка 10–14 – 10–10 мм рт. ст. и ниже при почти полном отсутствии кислорода и углеродсодержащих компонент. При проведении оценок достигаемых уровней разрежения предполагалось, что с рабочей («теневой») поверхности защитного экрана предварительно удалены сорбированные примеси, и скорости собственного газовыделения в зону следа соответствуют парциальному давлению порядка 10–14 мм рт. ст. Этот уровень газовыделения характерен для обезгаженных металлов, применяемых в сверхвысоковакуумной технике. Результаты оценок также показали, что из окружающей среды в зону разрежения за защитным экраном преимущественно попадают «быстрые» молекулы Не и Н2, скорости теплового движения которых существенно превышают орбитальную скорость полета, и их парциальные давления на высотах Н = 250 – 400 км на пять-шесть порядков ниже по сравнению с указанным выше парциальным давлением молекул газовыделения. Настоящая статья посвящена разработке научных основ эксперимента в условиях орбитального полета международной космической станции и обоснованию целесообразности его проведения.

Ключевые слова

космическое материаловедение, молекулярно-лучевая эпитаксия, защитный экран, орбитальный полет, сверхвысокий вакуум

Список литературы

[1] Зворыкин Л. Л., Котов В. М., Крылов А. Н. Моделирование взаимодействия потока сильно разреженного газа с обтекаемой поверхностью / Труды Х Всесоюзной конференции по динамике разреженных газов. М. Изд-во МЭИ. 1991. С. 31–39.

[2] Pchelyakov O. P., Dvurechensky A. V., Latyshev A. V., Aseev A. L. Ge/Si heterostructures with coherent Ge quantum dots in silicon for applications in nanoelectronics // Semiconductor Science and Technology, 2011, vol. 26, no. 1, pp. 14–27. doi: 10.1088/0268-1242/26/1/014027

[3] Климук П. И.,Забелина И. А., Гоголев В. П. Визуальные наблюдения и загрязнения оптики в космосе. Л. Машиностроение. 1983.

[4] Зворыкин Л. Л., Мишина Л. В., Пярнпуу А. А. Моделирование взаимодействия разреженного газа с твердой поверхностью / Препринт ВЦ АН СССР. М. 1988.

[5] Mishina L. V., Krylov A. N., Pyarnpuu A. A., Zvorykin L. L. Kinetic Modeling of Flows near Complex Form Bodies. Rarefied Gas Dynamics. New York, 1991, pp. 1391–1397.

[6] Пчеляков О. П., Ольшанецкий Б. З., Гутаковский А. П. Эпитаксия гетероструктур на кремнии в условиях космоса (предложение на проведение исследований по программе РАН на ОК «Мир»). ИФП СО РАН, 1996.

[7] Нусинов М. Д. Воздействие и моделирование космического вакуума. М. 1982.

[8] Беляков И. Т., Борисов Ю. Д. Технология в космосе. М. 1974.

[9] Валиев К., Орликовский А. Технологии СБИС. Основные тенденции развития // Электроника. Наука. Технология. Бизнес. 1996. № 5–6, С. 3–10.

[10] Ignatiev A. The wake shield facility and space-based thin film science and technology // Earth Space Revew, 1995, vol. 2, no. 2, pp. 10–17.

[11] Ignatiev A., Freundlich A., Pchelyakov O., Nikiforov A., Sokolov L., Pridachin D., Blinov V. Molecular Beam Epitaxy in the Ultravacuum of Space: Present and Near Future // From Research to Mass Production, 2018, pp. 741–749. doi: 10.1016/B978-0-12-812136-8.00035-9



Цитирование данной статьи

Пчеляков О.П., Блинов В.В., Никифоров А.И., Соколов Л.В., Зворыкин Л.Л. Создание высоковакуумной зоны в аэродинамическом следе за защитным экраном в условиях орбитального полета на высотах H = 250 – 400 км // Космические аппараты и технологии. 2018. Т. 2. № 3. С. 119-124. doi: 10.26732/2618-7957-2018-3-119-124


Лицензия Creative Commons
Данная статья лицензирована по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.