Просмотр сведений о научной статье
Обложка номера
Заголовок
СВ-синтез TiB2-MgAl2O4 композитов для жаростойких покрытийАвторы
Н.И. Афанасьев, Н.И. Радишевская, О.К. Лепакова, А.Ю. Назарова, В.Д. КитлерОрганизация
Томский научный центр СО РАНг. Томск, Российская Федерация
Аннотация
Бориды металлов широко используются в качестве теплоизоляционных материалов, но в условиях высокотемпературных окислительных сред эффективность их применения значительно снижается. Для повышения термостойкости конструкционных материалов на основе диборида титана и предотвращения роста кристаллов TiB2 применяли добавки химически стойкой алюмомагнезиальной шпинели, обладающей огнеупорными свойствами. Целью данной работы являлось исследование структуры композита TiB2-MgAl2O4, полученного методом самораспространяющегося высокотемпературного синтеза двумя способами. Первый – СВ-синтез диборида титана из его элементов с добавкой алюмомагнезиальной шпинели. Другим способом решения получения термостойкого композиционного материала является СВ-синтез алюмомагнезиальной шпинели с добавлением готового диборида титана. Наилучшие результаты получены первым способом. Структура с равномерным распределением мелких зерен TiB2 синтезирована с добавкой 25 % масс. MgAl2O4. Cоставы исследовали рентгенофазовым анализом (ДРОН-3M, фильтрованное Сu-kα-излучение), ИК-спектроскопией (Nicolet 5700) и сканирующей электронной микроскопией (Philips SEM 515). Полученный материал представляет собой композит, в котором частицы TiB2, имеющие размер, не превышающий 5 мкм, равномерно распределены в матрице алюмомагнезиальной шпинели.Ключевые слова
диборид титана, алюмомагнезиальная шпинель, самораспространяющийся высокотемпературный синтез, композитыСписок литературы
[1] Хорошавин Л. Б. Шпинелидные наноогнеупоры. Екатеринбург : УрО РАН, 2009. 600 с.
[2] Omid E. K., Naghizadeh R., Rezaie H. R. Synthesis and comparison of MgAl2O4-Ti(C, N) composites using aluminothermic-carbothermal reduction and molten salts routes // Journal of Ceramic Processing Research, 2013, vol. 14, no. 4, pp. 445–447.
[3] Zaki Z .I, Ahmed Y. M. Z., Abdel-Gawad S. R. In-situ synthesis of porous magnesia spinel/TiB2 composite by combustion technique // Journal of the Ceramic Society Japan, 2009, vol. 117 (1366), pp. 719–723.
[4] Horvitz D., Gotman I. Pressure-assisted SHS synthesis of MgAl2O4-TiAl in Situ composites with interpenetrating networks // Acta Materialia, 2002, vol. 50, no. 8, pp.1961–1971.
[5] Мержанов А. Г. Процессы горения и синтеза материалов. Черноголовка : Издательство ИСМАН, 1998. 511 с.
[6] Самсонов Г. В., Буланкова Т. Г., Бурыкина Ф. Л., Знатокова Т. Н. Физико-химические свойства окислов: справочник. М. : Металлургия, 1969. 456 с.
[7] Рузинов Л. П., Гуляницкий Б. С. Равновесные превращения металлургических реакций. М. : Металлургия, 1975. 416 с.
[8] Барабанов В. Ф., Гончаров Г. Н., Зорина М. Л. Современные физические методы в геохимии. Л. : Изд-во Ленинградского ун-та, 1990. 391 с.
[9] Чернякова К. В., Врублевский И. А., Ивановская М. И., Котиков Д. А. Примесно-дефектная структура анодного оксида алюминия, сформированного методом двустороннего анодирования в растворе винной кислоты // Журнал прикладной спектроскопии. 2012. Т. 79, № 1. С. 83–89.
[10] Солодкий Е. Н., Солодкий Н. Ф. Причины окрашивания корундовой керамики // Стекло и керамика. 2000. № 11. С. 24–26.
[11] Накамото К. ИК спектры и спектры КР неорганических и координационных соединений / пер. с англ. под редакцией Ю. А. Пентина. М. : Мир, 1991. 536 с.
[12] Бланк В. Д., Эстрин Э. И. Фазовые превращения в твердых телах при высоком давлении. М. : Физматлит, 2011. 412 с.
[13] Лидин Р. А., Молочко В. А., Андреева Л. Л. Неорганическая химия в реакциях: справочник. М. : Дрофа, 2007. 637 с.
[14] Баличева Т. Г., Лобанева О. А. Электронные и колебательные спектры неорганических и координационных соединений. Л. : Изд-во ЛГУ, 1983. 117 с.
[15] Лавренов А. В., Булучевский Е. А., Карпова Т. Р., Моисеенко М. А. и др. Синтез, строение и свойства компонентов моторных топлив // Химия в интересах устойчивого развития. 2011. Т. 19. № 1. С. 87–95.
[16] Перовскит [Электронный ресурс]. URL: http://natural-museum.ru/mineral/перовскит (дата обращения: 13.09.2018).
Цитирование данной статьи
Афанасьев Н.И., Радишевская Н.И., Лепакова О.К., Назарова А.Ю., Китлер В.Д. СВ-синтез TiB2-MgAl2O4 композитов для жаростойких покрытий // Космические аппараты и технологии. 2018. Т. 2. № 3. С. 157-164. doi: 10.26732/2618-7957-2018-3-157-164
Данная статья лицензирована по лицензии Creative Commons «Attribution-NonCommercial» («Атрибуция — Некоммерческое использование») 4.0 Всемирная.