№1 2018


Determination of stability category for distributed automated control systems


1A.A. Tolmachev, 2M.A. Prohorov, 2A.S. Andrianov


1Military Aerospace Defense Academy
Tver, Russian Federation
2Military Space Academy
Saint Petersburg, Russian Federation


At present, space systems and means became one of the main instruments of ensuring fighting and daily activity of Armed forces of the developed states of the world. In modern conditions space systems rise in a row strategic a component which stability of functioning it is critical for maintaining strategic balance. The analysis of the conflicts of the last decades has shown a tendency to confrontation shift to the space sphere and a cyberspace. Space systems and means allow to raise significantly fighting opportunities of troops, and the state which doesn't have potential of use of the means of armed struggle placed in the aerospace sphere, or allowed miscalculations in policy of development and use of the space systems and means, will be doomed to the guaranteed defeat in future military conflicts. The defense capability and safety of the Russian Federation directly depend on a state and opportunities of means of strategic warning of preparation for aggression, the beginning of nuclear missile attack and also quality of comprehensive providing with space forces and means of army and fleet in peace and wartime. In this regard there was a need to carry out correction of content of category of stability of a funktsionirorvaniye of the distributed automated control systems.


demand, stability, intelligence protection, distributed automated control system, space systems, information confrontation, space assets


[1] Rossijskij Institut Strategicheskih Issledovanij [Russian Institute for Strategic Studies]. – www: http// (In Russian)

[2] Chashchin S. V., Vecherkin V. B., Goncharov A. M. Algoritm ocenivaniya zhivuchesti kompleksov sistem avtomatizacii i ego ehlementov v usloviyah destruktivnyh vozdejstvij [Algorithm for estimating the survivability of complexes of automation systems and its elements under destructive influences ] / Telekommunikacionnye tekhnologii. 2016. no. 14. pp. 122–125. (In Russian)

[3] Manujlov YU. S., Petushkov A. M., Novikov E. A. Upravlenie celevym primeneniem kosmicheskoj navigacionnoj sistemy po tekhnologii gibkih strategij [Management of the target application of the space navigation system using flexible strategy technology]. Saint-Petersburg, VKA imeni A. F. Mozhajskogo. 2007. 176 p.

[4] Prohorov M. A. Ocenivanie ustojchivosti centra upravleniya poletom kosmicheskih apparatov v usloviyah destruktivnyh vozdejstvij [Estimation of the stability of the space flight control center under the conditions of destructive influences] [Trudy konferencii II Mezhvuzovskoj nauchno-prakticheskoj konferencii «Problemy tekhnicheskogo obespecheniya vojsk v sovremennyh usloviyah»] 2017, pp. 160–163. (In Russian)

[5] Ivanov A. K. Proektirovanie ustojchivoj ASU: Uchebnoe posobie [Designing a sustainable control system]. Ul'yanovsk, UlGTU, 2002. 144 p.

[6] Artyuhov V. V. Obshchaya teoriya sistem: Samoorganizaciya, ustojchivost', raznoobrazie, krizisy [General theory of systems: Self-organization, sustainability, diversity, crises]. Moscow, Knihnyj dom «LIBROKOM», 2009. 224 p.

[7] Makarenko S.I. Informacionnoe oruzhie v tekhnicheskoj sfere: tnrminologiya, klassifikaciya, primery [Information weapons in the technical sphere: TNM, classification, examples]. Sistemy upravleniya, svyazi i bezopasnosti, 2016, no. 3, pp. 292–376. (In Russian)

[8] Makarenko S. I., Ivanov M. S., Popov S. A. Pomekhozashchishchennost' sistem svyazi s psevdosluchajnoj perestrojkoj rabochej chastoty. Monografiya [Interference immunity of communication systems with pseudo-random working frequency tuning]. Saint-Petersburg, Svoe izdatel'stvo Publ., 2013. 166 p. (In Russian)

[9] Kocynyak M. A., Kuleshov I. A., Kudryavcev A. M., Kiberustojchivost' informacionno-telekommunikacionnoj seti [Cyber resistance of the information and telecommunications network]. Saint-Petersburg, Boston-spektr Publ., 2015. 150 p.

[10] Evglevskaya N. V., Privalov An. A., Privalov Al. A. Model' processa podgotovki zloumyshlennika k informacionnomu vozdejstviyu na avtomatizirovannye sistemy upravleniya zheleznodorozhnym transportom [Model of the process of preparing an attacker for information impact on automated railway management systems]. Byulleten' rezul'tatov nauchnyh issledovanij, 2012, pp. 17–25. (In Russian)

For citing this article

Tolmachev A.A., Prohorov M.A., Andrianov A.S. Determination of stability category for distributed automated control systems // Spacecrafts & Technologies, 2018, vol. 2, no. 1, pp. 17-21. doi: 10.26732/2618-7957-2018-1-17-21

Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).