Article


Cover

№2 2018

Title

About thermoemission system cooling materials of gas turbine converters blades of spacecrafts

Authors

A.V. Kolychev, V.A. Kernozhitskiy, L.P. Unakov, A.A. Levihin

Organization

Baltic State Technical University «VOENMEH» named after D. F. Ustinov
Saint Petersburg, Russian Federation

Abstract

Rated estimates of effect of application of the thermoemission way of cooling of blades of turbines of the gas turbine converters of the spacecrafts developed in Baltic State Technical University «VOENMEH» named after D. F. Ustinov are given in the present article. Relevance of development of thermoemission way of cooling is confirmed by the fact that now in the Russian Federation development of the transport and power module at the heart of which the principle of gas turbine transformation is put is conducted. In this case it is supposed that blades of the turbine will be made of the ceramic materials functioning in the environment of the inert gases heated from the onboard source of heat energy. One of problems at the same time is emergence of temperature gradients, tension and deformations that can lead to emergence of cracks. However, if to execute ceramic blades from metal similar conduction (the boride, carbides, alloys of boride and carbides) using thermoemission way of cooling, then the opportunity essential (more, than twice) decrease in both blades of turbines temperature, and temperature differences, and tension in blades of turbines design appears. In article it is also shown that decrease in temperature stresses in the design of hot elements at the equivalent heat load is reached due to fundamental properties of thermal electron emission, namely thanks to dependence of intensity of thermal electron emission and electronic cooling on temperature.

Keywords

thermionic emission, thermionic cooling system of turbine blades, gas turbine converter, spacecraft

References

[1] Kolychev A. V., Kernozhitskiy V. A. (RU) Sposob okhlazhdeniya lopatok turbin gazoturbinnykh ustanovok [A method of turbine blade cooling for gas turbine installations]. Patent RU 2573551, 2016, bulletin no. 2. 7 p.

[2] Kolychev A. V., Kernozhitskiy V. A. (RU) Ustroystvo okhlazhdeniya lopatok turbin gazoturbinnykh ustanovok [A device for cooling turbine blades of gas turbine installations]. Patent RU 2578387, 2016, bulletin no. 9. 8 p.

[3] Kolychev A.V., Kernozhitskiy V.A. Thermionic method and device of cooling turbine blades of spacecraft gas turbine converters with longtime lifecycle // The Research of the Science City, 2017, vol. 1, no. 2, pp. 55–60. (In Russian)

[4] Koroteev A. S., Akimov V. N., Gafarov A. A. Sozdanie i perspektivyi primeneniya kosmicheskoy yadernoy energetiki v Rossii [Creation and prospects of application of space nuclear power in Russia] // Polet, 2007, no. 7, pp. 3–15. (In Russian)

[5] Ushakov B. A., Nikitin V. D., Emelyanov I. Ya. Osnovy termoemissionnogo preobrazovaniya energii [Fundamentals of thermionic energy conversion]. Moscow, Atomizdat Publ., 1974. 288 p. (In Russian)

[6] Kvasnikov L. A., Kaybyshev V. Z., Kalandarishvili A. G. Rabochie protsessy v termoemissionnykh preobrazovatelyakh yadernykh energeticheskikh ustanovok [Working processes in thermionic converters of nuclear power plants]. Moscow, MAI Publ., 2001. 240 p. (In Russian)

[7] Mojzhesa B. Ya., Pikusa G. E. Termoehmissionnye preobrazovateli i nizkotemperaturnaya plazma [Thermoemission converters and low-temperature plasma]. Moscow, Nauka, 1973. (In Russian)

[8] Stahanov I. P., Chernovec V. E. Fizika termoehmissionnyh preobrazovatelej [Physics of thermionic converters]. Moscow, Energoatomizdat, 1985. (In Russian)

[9] Fomenko V. S. Emissionnye svojstva materialov [Emissive properties of materials]. Kiev, Nauk. dumka, 1981. 338 p. (In Russian)

[10] Wilson V. C., Podkulski S. P. Characteristics of a thermionic converter with a chloride vapor deposited tungsten emitter (110) and a nickel collector // NASA contractor report CR-1416, WASHINGTON, D.C., 1969, 41 p.

[11] Kresanov V. S., Malahov N. P., Morozov V. V. Vysokoehffektivnyj ehmitter ehlektronov na osnove geksaborida lantana [Highly efficient electron emitter based on lanthanum hexaboride]. Moscow, Energoatomizdat, 1987, 152 p. (In Russian)

[12] Grashchenkov D. V., Shchegoleva N. E., Simonenko E. P., Ermakova G. V. Vysokotemperaturnyj keramicheskij kompozicionnyj material, ustojchivyj pri dlitel’noj ehkspluatacii do 2000 °C s mnogourovnevoj kompleksnoj sistemoj zashchity [High-temperature ceramic composite material, resistant to long-term operation up to 2000 °C with multilevel complex protection system] // Vse Materialy. Entsiklopedicheskii spravochnik, 2011, no. 8, pp. 25–28. (In Russian)

[13] Rudnev A. M., Dikij K. L. Povyshenie zharoprochnosti keramicheskih materialov putem sozdaniya voloknistyh struktur [Increase the heat resistance of ceramic materials by creating fibrous structures] // Bulletin of SevNTU, 2011, no. 119, pp. 50–53. (In Russian)

[14] Pryamilova E. N., Pojlov V. Z., Lyamin Yu. B. Termohimicheskaya stojkost’ keramiki na osnove boridov cirkoniya i gafniya [Thermochemical resistance of ceramics based on borides of zirconium and hafnium] // PNRPU Bulletin. Chemical Technology and Biotechnology, 2014, no. 4, pp. 55–67. (In Russian)

[15] Varrik N. M., Ivahnenko Yu. A., Maksimov V. G. Oksid-oksidnye kompozicionnye materialy dlya gazoturbinnyh dvigatelej (obzor) [Oxide Oxide Composite Materials for Gas Turbine Engines (Review)] // Proceedings of VIAM, 2014, no. 8, p. 3. (In Russian)

[16] Birger I. A., Shorr B. F., Iosilevich G. B. Raschet na prochnost’ detalej mashin : spravochnik [Calculation of the strength of machine parts]. Moscow, Mashinostroenie, 1993. 640 p. (In Russian)



For citing this article

Kolychev A.V., Kernozhitskiy V.A., Unakov L.P., Levihin A.A. About thermoemission system cooling materials of gas turbine converters blades of spacecrafts // Spacecrafts & Technologies, 2018, vol. 2, no. 2, pp. 73-78. doi: 10.26732/2618-7957-2018-2-73-78