№3 2018


Development of a calculation and experimental method for modal analysis of large transformable space structures


1V.A. Berns, 2V.E. Levin, 2D.A. Krasnorutsky, 3D.A. Marinin, 1E.P. Zhukov, 1V.V. Malenkova, 2P.A. Lakiza


1Siberian Aeronautical Research Institute named after S. A. Chaplygin
Novosibirsk, Russian Federation
2Novosibirsk State Technical University
Novosibirsk, Russian Federation
3JSC Academician M. F. Reshetnev Information Satellite Systems
Zheleznogorsk, Krasnoyarsk region, Russian Federation


The developed calculation and experimental method for modal analysis of large transformable space structures consists in dividing the structure into component parts, modal testing of these parts, correction of mathematical models of component parts based on test results, synthesis of mathematical models of components for constructing a global model of the entire structure, determination of the dynamic characteristics of the entire structure by the global mathematical model. The method for determining the parameters of the structures component parts eigentones in modal tests is described, which has a low sensitivity to measurement errors and the mutual influence of tones with close eigenfrequencies. The effectiveness of this method is illustrated by the results of testing of aircrafts and the spacecraft unit. To correct the mathematical models of the components, the stiffness and inertia matrices undergo a reduction procedure. The structure global mathematical model is the result of the synthesis of the corrected reduced inertia and stiffness matrices of the component parts. It is reasonable to solve the problem of determining the modal characteristics of the transformable space structures by the results of the components testing, owing to their large dimensions and complexity in the assembled form. In addition, large space structures have, as a rule, low eigenfrequencies – up to a tenth of a hertz. Experimental modal analysis of such structures comes with serious difficulties. As an implementation example of the method being developed, the results of the modal analysis of the spacecraft umbrella antenna model are presented.


large transformable space structures, structure component parts, modal tests, mathematical model, correction of mathematical models, synthesis of mathematical models, modal characteristics


[1] Mezhin V. S., Obukhov V. V. Praktika primeneniya modal’nykh ispytaniy dlya selei verifikasii konechmo-elementnykh modelei konstryksii izdelii raketno-kosmicheskoi tekhniki [The practice of using modal test to verify finite element models of rocket and space hardware]. Kosmicheskaya tekhnika i tekhnologii [Space engineering and technology], 2014, no. 1, pp. 86–91. (In Russian)

[2] Zimin V. N. Eksperimental'noe opredelenie dinamicheskikh kharakteristik krupnogabaritnykh transformiruemykh kosmicheskikh konstruktsiy [Experimental dynamic characteristic determination of large transformable constructions of spacecraft]. Vestnik MGTU im. N. E. Baumana. Serya Mashinostroenie [Herald of the Bauman Moscow state technical university. Series: Mechanical engineering], 2011, no. 1, pp. 47–56. (In Russian)

[3] Berns V. A., Lysenko E. A. Problemy eksperimental'nogo modal'nogo analiza pri vozbuzhdenii konstruktsii ogranichennym chislom sil [Problems of the experimental modal analysis of structures by limited number of excitation forces of vibration]. Nauchnyy vestnik NGTU [Science Bulletin of NSTU], 2013, no. 1 (50), pp. 105–111. (In Russian)

[4] Berns V. A., Lushin V. N., Marinin D. A., Morozov O. D., Dolgopolov A. V. Issledovaniya vliyaniya vozdushnoy sredy na dinamicheskie kharakteristiki elementa solnechnoy batarei [Researches of the air influence on dynamic characteristics of the solar battery element]. Nauchnyy vestnik NGTU [Science Bulletin of NSTU], 2014, no. 1 (54), pp. 159–164. (In Russian)

[5] Heylen W., Lammens S., Sas P. Modal’nyi analiz teotiya i ispytaniya [Modal Analysis Theory and Testing]. OOO «Novatest», 2010, 319 p. (In Russian)

[6] Zharov E. A., Smyslov V. I. Tochnost' opredeleniya kolebatel'nykh kharakteristik uprugoy konstruktsii pri rezonansnykh ispytaniyakh s mnogotochechnym vozbuzhdeniem [The accuracy of determining the vibrational characteristics of the elastic structure when the resonant test with multi-point excitation]. Uchenye zapiski TsAGI im. N. E. Zhukovskogo [TsAGI Science Journal], 1976, vol. 7, no. 5, pp. 88–97. (In Russian)

[7] Berns V. A. Pogreshnosti opredeleniya kharakteristik sobstvennykh tonov pri blizkikh sobstvennykh chastotakh [Errors in the Definition of Eigen Tones Characteristics in Close Natural Frequencies]. Kontrol', diagnostika [Testing. Diagnostics], 2011, no. 3 (153), pp. 12–16. (In Russian)

[8] Berns V. A. Otsenka tochnosti opredeleniya kharakteristik sobstvennykh tonov pri nalichii sluchaynykh oshibok v eksperimental'nykh dannykh [Assessment of determination accuracy of eigentones characteristics in the presence of random errors in the experimental data]. Vestnik SibGAU [SibGAU Bulletin], 2010, no. 5 (31), pp. 208–212. (In Russian)

[9] Berns V. A., Dolgopolov A. V., Zhukov E. P., Marinin D. A. Vliyanie sistemy uprugogo vyveshivaniya na tochnost' rezul'tatov modal'nykh ispytaniy letatel'nykh apparatov [Influence of suspension system on the accuracy of the aircraft modal testing results] Vestnik SGAU im. S. P. Koroleva [Vestnik of the Samara state aerospace university], 2016, vol. 15, no. 1, pp. 18–27. (In Russian)

[10] Berns V. A., Zhukov E. P., Marinin D. A., Malenkova V. V. Eksperimental'nyy modal'nyy analiz letatel'nykh apparatov na osnove monofaznykh kolebaniy [Experimental modal analysis of aircrafts on the basis of monophasic vibrations]. Izvestiya Samarskogo nauchnogo tsentra RAN [Izvestia of Samara Scientific Center of the Russian Academy of Sciences], 2018, vol. 20, no. 4, pp. 43–54. (In Russian)

[11] Jang J., Smyth A. Model updating of a full-scale FE model with nonlinear constraint equations and sensitivity-based cluster analysis for updating parameters // Mechanical Systems and Signal Processing, 2017, no. 83, pp. 337–355.

[12] Bakir P., Reynders E., Roeck B. Sensitivity-based finite element model updating using constrained optimization with a trust region algorithm // Journal of Sound and Vibration, 2007, no. 305, pp. 211–225.

[13] Element-by-element model updating of large-scale structures based on component mode synthesis method / J. Yu, Y. Xia, W Lin, X Zhou // Journal of Sound and Vibration, 2016, no. 362, pp. 72–84.

[14] Sarsri D., Azrar L. Dynamic analysis of large structures with uncertain parameters based on coupling component mode synthesis and perturbation method // Ain Shams Engineering Journal, 2016, no. 7, pp. 371–381.

[15] A model-updating approach based on the component mode synthesis method and perturbation analysis / T. Wang, H. He, W. Yan, G.P. Chen // Journal of Sound and Vibration, 2018, no. 433, pp. 349–365.

[16] Analysis of dynamic characteristics of the rigid body/elastic body coupling of airbreathing hypersonic vehicles / Z. Dong, T. Shuo, Z. Qiang, W. Rong // Aerospace Science and Technology, 2016, no. 48, pp. 328–341.

[17] Reduction and coupling of substructures via Gram-Schmidt Interface modes / G. Battiato, C. M. Firrone, T. M. Berruti, B. I. Epureanu // Computer Methods in Applied Mechanics and Engineering, 2018, vol. 336, pp. 187–212.

[18] Reducing the impact of measurement errors in FRF-based substructure decoupling using a modal model / P. Peeters, S. Manzato, T. Tamarozzi, W. Desmet // Mechanical Systems and Signal Processing, 2018, no. 99, pp. 384–402.

[19] Neural-network-based sliding-mode control for multiple rigid-body attitude tracking with inertial information completely unknown / M. Xi, S. Fuchun, L. Hongbo, H. Bin // Information Sciences, 2017, no. 400, pp. 91–104.

[20] Rigid body stiffness matrix for identification of inertia properties from output-only data / A. Malekjafarian, M. R. Ashory, M. M. Khatibi, M. Saberlatibari // European Journal of Mechanics – A/Solids, 2016, no. 59, pp. 85–94.

[21] D'Ambrogio W., Fregolent F. Replacement of unobservable coupling DoFs in substructure decoupling // Mechanical Systems and Signal Processing, 2017, no. 95, pp. 380–396.

[22] D'Ambrogio W., Fregolent F. Inverse dynamic substructuring using the direct hybrid assembly in the frequency domain // Mechanical Systems and Signal Processing, 2014, no. 45, pp. 360–377.

[23] Allen M., Mayes R. Comparison of FRF and Modal Methods for Combining Experimental and Analytical Substructures // Journal of Sound and Vibration, 2008, pp. 310–324.

[24] Allen M., Mayes R., Bergman E. Experimental modal substructuring to couple and uncouple substructures with flexible fixtures and multi-point connections // Journal of Sound and Vibration, 2010, no. 329, pp. 4891–4906.

[25] Herting D. N. A general purpose, multi-stage, component modal synthesis method // Finite Elements in Analysis and Design, 1985, no. 1, pp. 153–164.

For citing this article

Berns V.A., Levin V.E., Krasnorutsky D.A., Marinin D.A., Zhukov E.P., Malenkova V.V., Lakiza P.A. Development of a calculation and experimental method for modal analysis of large transformable space structures // Spacecrafts & Technologies, 2018, vol. 2, no. 3, pp. 125-133. doi: 10.26732/2618-7957-2018-3-125-133

Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).