Article


Cover

№3 2018

Title

Temperature state and estimation of deviation in the shape of the spherical shell of the calibration spacecraft in the shadow section of the near-Earth orbit

Authors

V.S. Zarubin, V.N. Zimin, G.N. Kuvyrkin

Organization

Bauman Moscow State Technical University
Moscow, Russian Federation

Abstract

A complex mathematical model describing alteration in a shape of a spherical shell of a calibration spacecraft is presented. The alteration is caused by the uneven temperature distribution over the shell surface when it is in the shadow section of the near-earth orbit. The thermal part of the model takes into account influence upon the shell of the own Earth radiation and the radiation heat transfer in the shell cavity. Unevenness of the shell surface radiation leads to the unevenness of the temperature distribution over the shell surface and thus to the alteration in shape of the spherical shell, that can affect the device functional characteristics. To determine the distortion in shape of the spherical shell, the fundamentals of the membrane theory of rotational shells were used. The quantitative analysis of the discussed model was carried out for cases of the steady non-uniform temperature distribution along the shell surface arising at different heights of the spacecraft above the Earth's surface. Obtained estimations of the distortion in shape of the shell of the calibration spacecraft can be compared with the permissible deviations that do not violate the spacecraft functional characteristics in the shadow section of the near-Earth orbit.

Keywords

calibration spacecraft, spherical shell, Earth surface radiation, radiation heat transfer

References

[1] Fateev V. F. Malye kosmicheskie apparaty informatsionnogo obespecheniya [Small spacecrafts for information support]. Moscow, Radiotekhnika Publ., 2010, 320 p. (In Russian)

[2] Mashchenko A. N., Pappo-Korystin V. N., Pashchenko V. A., Vasil’ev V. G. Rakety i kosmicheskie apparaty konstruktorskogo byuro «Yuzhnoe» [Rockets and spacecraft from the engineering department «Yuzhnoe»]. Dnepropetrovsk, The Yangel’ state engineering department «Yuzhnoe» Publ., 2000, 240 p. (In Russian)

[3] Tarasenko M. V. Voennye aspekty sovetskoy kosmonavtiki [Military aspects of the soviet astronautics]. Moscow, Russian press agency special partnership «Nikol’» Publ., 1992, 164 p. (In Russian)

[4] Freeland R. E., Bilyeu G. D., Veal G. R. Development of flight hardwarefor a large, inflatable-deployable antenna experiment // Acta Astronautica, 1996, vol. 38, no. 4–8, pp. 251–260. doi: 10.1016/0094-5765(96)00030-6.

[5] Chodimella S. P., Moore J., Otto J., Fang H. Design evaluation of alarge aperture deployable antenna // AIAA Papers, 2006, no. 1603, pp.1–20. doi: 10.2514/6.2006-1603.

[6] Zimin V. N., Krylov A. V., Meshkovskiy V. E., Sdobnikov A. N., Fayzullin F. R., Churilin S. A. Osobennosti rascheta raskrytiya krupnogabaritnyh transformiruemyh konstrukcij razlichnyh konfiguracij [Special features of deploy calculation for large transformable structures of different configuration] // Nauka i obrazovanie, MGTU im. N. E. Baumana, 2014, no. 10, pp. 179–191. doi: 10.7463/1014.0728802. (In Russian)

[7] Zarubin V. S., Zimin V. N., Kuvyrkin G. N. Temperaturnoe sostoyanie i otklonenie formy sfericheskoj obolochki kosmicheskogo kalibrovochnoyustirovochnogo apparata [Temperature state and deviation in a shape of a spherical shell of a space calibrator] // Aerokosmicheskiy nauchny zhurnal, 2016, no. 1, pp. 27–45. doi: 10.7463/aersp.0116.0831867. (In Russian)

[8] Zarubin V. S., Zimin V. N., Kuvyrkin G. N. Temperature distribution in the spherical shell of a gauge-alignment spacecraft // Journal of Applied Mechanics and Technical Physics, 2017, vol. 58, no. 6, pp. 1083–1090. doi: 10.1134/S0021894417060141. (In Russian)

[9] Zarubin V. S., Zimin V. N., Kuvyrkin G. N. Temperaturnoe sostoyanie obolochki kalibrovochnogo kosmicheskogo apparata na tenevom uchastke okolozemnoj orbity [Temperature state of a shell of a gauge spacecraft on the shadow section of the near-earth orbit]. Aerokosmicheskiy nauchny zhurnal, 2016, no. 4, pp. 22–37. doi: 10.7463/aersp.0416.0846458. (In Russian)

[10] Koshkin V. K. Osnovy teploperedachi v aviatsionnoy i raketno-kosmicheckoy tekhnike [Fundamentals of heat-transfer in aviation and space-rocket engineering]. Moscow, Mashinostroenie Publ., 1975, 624 p. (In Russian)

[11] Optical Calibration Sphere Experiment. Available at: https://directory.eoportal.org/web/eoportal/satellite-missions/j/jawsat# footback10 (accessed 25.08.2018).

[12] Zimin V. N. K voprosu modelirovaniya i rascheta dinamiki raskrytiya transformiruemyh kosmicheskih konstrukcij [On modeling and calculation of deployment dynamics of transformable space structures] // Oboronnaya tekhnica, 2006, no. 1, pp. 123–127. (In Russian)

[13] Zarubin V. S., Kuvyrkin G. N. Mathematical Modeling of Thermomechanical Processes under Intense Thermal Effect // High Temperature, 2003, vol. 41, no. 2, pp. 257–265. doi: 10.1023/A:1023390021091.

[14] Balabukh L. I., Kolesnikov K. S., Zarubin V. S., Alfutov N. A., Usyukin V. B., Chizhov V. F. Osnovy stroitel’noy mekhaniki raket [Fundamentals of the rocket structural mechanics]. Moscow, Visshaya shkola Publ., 1969, 496 p. (In Russian)

[15] Marchuk G. I., Kondrat’ev K. Ya., Kozoderov V. V. Radiatsionny balans Zemli: klyuchevye aspekty [Earth-radiation budget: main aspects]. Moscow, Nauka Pabl., 1988, 224 p. (In Russian)

[16] Pavlov A. B. Optiko-elertronnye pribory [Optoelectronic devices]. Moscow, Energiya Pabl., 1974, 380 p. (In Russian)

[17] Kondrat’ev K. Ya., D’yachenko L. N., Kozoderov V. V. Radiatsionny balans Zemli [Earth-radiation budget]. Leningrad, Gidrometeoizdat Pabl., 1988, 350 p. (In Russian)

[18] Gilmor D. G. Spacecraft thermal control handbook. vol. 1. Fundamental Technologies / El Segundo, California, Aerospace Press, 2002. 836 p.

[19] Komarova M. A. Temperaturnye usloviya na korpuse uzlovogo modulya na ehtape avtonomnogo poleta k mezhdunarodnoj kosmicheskoj stancii [Temperature conditions at the main module airframe on the stage of autonomy flight to the international space station] // Izvestiya RAN. Energetika, 2012, no. 2, pp. 23–30. (In Russian)

[20] Gukalo A. A., Gribkov A. S. Optimizaciya temperatury ploskogo i krestoobraznogo holodil'nika–izluchatelya kosmicheskoj yadernoj ehnergeticheskoj ustanovki s uchetom vneshnego teplovogo izlucheniya [Temperature optimization for a flat cross-formed cooler-emitter of a space nuclear power system that takes into account the outer heat radiation] // Izvestiya RAN. Energetika, 2012, no. 2, pp. 103–110. (In Russian)

[21] Zigel’ R., Khauell G. Teploobmen izlucheniem [Radiative heat exchange]. Moscow, Mir Publ., 1975, 934 p. (In Russian)

[22] Byuller K. U. Teplo- i termostoykie polimery [Heat-resistant polymers]. Moscow, Khimiya Publ., 1984, 1056 p. (In Russian)

[23] Analiticheskiy portal khimicheskoy promyshlennosti [Analytical portal of the chemical industry]. Available at: http://www.newchemistry.ru/production.php?cat-id=52&catparent=7&level=3 (accessed 28.08.2018). (In Russian)

[24] Chirkin V. S. Teplofizicheskie svoystva materialov yadernoy tekhniki. Spravochnik [Heat-transfer properties of the nuclear engineering materials. Reference book]. Moscow, Atomizdat Publ., 1968, 484 p. (In Russian)

[25] Mnogosloynye i kombinirovannye plenochnye materialy i izdeliya iz nikh [Multilayer and combined film materials and product made from them]. Available at: http://rccgroup.ru/plast/wp-content/uploads/3.9.-Ivanenko.ppt (accessed 28.08.2018). (In Russian)

[26] Sheydlin A. E. Izluchatel’nye svoystva tverdykh materialov [Emitting properties of the hard materials]. Moscow, Energiya Publ., 1974, 472 p. (In Russian)

[27] Obzor bazovykh svoystv i sfer primeneniya politetraftoretilena (PTFE) [Review of fundamental properties and applications of polytetrafluoroethylene (PTFE)]. Available at: http://www.engplast.ru/entry.php?198&id=2 (accessed 28.08.2018). (In Russian)

[28] Komkov M. A., Sabel’nikov V. V., Baslyk K. P. Konstruktivno-tekhnologicheskij analiz truboprovodov, namotannyh iz poliimidoftoroplastovoj plenki [Constructively-technological analysis of pipe conduits wound with polyimidofluoroplastic film] // Vestnik MGTU im. N. E. Baumana, Mashinostroenie, 2012, pp. 78–86. (In Russian).



For citing this article

Zarubin V.S., Zimin V.N., Kuvyrkin G.N. Temperature state and estimation of deviation in the shape of the spherical shell of the calibration spacecraft in the shadow section of the near-Earth orbit // Spacecrafts & Technologies, 2018, vol. 2, no. 3, pp. 147-156. doi: 10.26732/2618-7957-2018-3-147-156


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).