Article


Cover

№4 2018

Title

Space experiment for precision thermal stabilization of quantum frequency standards for navigation satellites

Authors

1V.E. Chebotarev, 2V.A. Derevyanko, 2A.V. Makukha, 1M.T. Bakirov

Organizations

1JSC Academician M. F. Reshetnev Information Satellite Systems
Zheleznogorsk, Krasnoyarsk region, Russian Federation
2Institute of Computational Modelling SB RAS, FRC KSC SB RAS
Krasnoyarsk, Russian Federation

Abstract

The basis of space navigation systems are highly stable atomic frequency standards, which form a highly accurate satellite time scale and a highly stable frequency grid, providing output accuracy characteristics of space systems as a whole. To basis of the precision thermostabilization system is the following basic principles: ensuring the spatial heterogeneity of heat fluxes based on atomic frequency standards using hyperheat-conducting plates; organization of high precision controlled thermal effects of heaters; improving the accuracy of temperature measurement (absolute and relative) using the onboard temperature standard. The results of laboratory, ground-based and space experiments showed that the principle of precision thermostabilization works in terms of taking into account the deviation of temperature from a given one and taking into account the influence of instability of the on-board power supply, and the accuracy of thermostabilization was also ensured taking into account the angle of rotation of solar cells from 0,025 °С up to 0,04 °C (in the shadow areas of the orbit). In addition, the using of hyper-conductive plates improved spatial instability of the thermoplate 6 times. As a result, the developed measures make it possible to increase the accuracy of precision thermostabilization to 0,01 °C.

Keywords

space navigation systems, navigation satellite, atomic frequency standards, precision thermostabilization, hyper heat-conducting plate, space experiment

References

[1] Chebotarev V. E., Kosenko V. E. Osnovy proektirovaniya kosmicheskikh apparatov informatsionnogo obespecheniya [Fundamentals of spacecraft design information support]. Krasnoyarsk, SibGAU Publ., 2011. 488 p. (In Russian)

[2] Kharisov V. N., Perov A. I., Boldin V. A. GLONASS. Printsipy postroeniya i funktsionirovaniya [GLONASS. Construction principles and operation]. Moscow, Radiotekhnika Publ., 2010. 800 p. (In Russian)

[3] Kosenko V. E, Fatkulin R. F., Zvonar V. D., Ilyin M. A., Chebotarev V. E. Precizionnye kosmicheskie platformy navigacionnyh KA [Precision space platforms of navigation satellites] // Science-intensive technologies, 2017, vol. 18, no. 12, pp. 5–8. (In Russian)

[4] Vasilyev E. N., Derevyanko V. A., Nesterov D. A., Kosenko V. E., Chebotarev V. E. Vychislitel'noe modelirovanie processov teploobmena v sistemah termoregulirovaniya kosmicheskih apparatov [Computational modeling of heat exchange processes in thermal control systems of spacecraft] // Computational technologies, 2009, vol. 14, issue 6, pp. 19–28. (In Russian)

[5] Zvonar V. D., Kosenko V. E., Bartenev V. A., Chebotarev V. E., Vasilyev E. N., Derevyanko V. A., Makukha A. V. Nestacionarnaya teplovaya model' i algoritm upravleniya sistemoj termostabilizacii atomnogo standarta chastoty navigacionnogo KA «Glonass-K» [The non-stationary thermal model and control algorithm of the thermal stabilization system of the atomic frequency standard of the navigation satellite Glonass-K] // Tezisy dokladov 15-j Mezhdunarodnoj nauchnoj konferencii «Sistemnyj analiz, upravlenie i navigaciya» [Abstracts of the 15th International Scientific Conference «System analysis, management and navigation»]. Evpatoria, 2010, pp. 101–102. (In Russian)

[6] Zvonar V. D., Chebotaryov V. E., Moklyak V. I. Osnovnye rezul'taty kosmicheskih ehksperimentov na KA «Glonass-M» [The main results of space experiments on the spacecraft Glonass-M] // Tezisy dokladov 15-j Mezhdunarodnoj nauchnoj konferencii «Sistemnyj analiz, upravlenie i navigaciya» [Abstracts of the 15th International Scientific Conference «System analysis, management and navigation»]. Evpatoria, 2010. (In Russian)

[7] Chebotarev V. E., Zvonar V. D., Kosenko V. E., Bakirov M. T., Derevyanko V. A., Makukha A. V., Vasilyev E. N. Ustrojstvo termostabilizacii radioehlektronnoj apparatury [The device thermal stabilization of electronic equipment]. Patent RU 2408919, 2011, bulletin no. 2.

[8] Zvonar V. D., Chebotaryov V. E., Fatkulin R. F., Derevyanko V. A., Vasilyev E. N., Derevyanko V. V. Paket prikladnyh programm dlya modelirovaniya teplovyh rezhimov pribornyh panelej kosmicheskogo apparata negermetichnogo ispolneniya [Application software package for modeling thermal modes of instrument panels of unsealed spacecraft] // Tezisy dokladov 15-j Mezhdunarodnoj nauchnoj konferencii «Sistemnyj analiz, upravlenie i navigaciya» [Abstracts of the 15th International Scientific Conference «System analysis, management and navigation»]. Evpatoria, 2011, pp. 99–100. (In Russian)

[9] Kosenko V. E, Zvonary V. D., Suntsov S. B., Derevyanko V. A., Vasilyev E. N., Nesterov D. A. Primenenie giperteploprovodyashchih struktur pri razrabotke negermetichnyh kosmicheskih apparatov povyshennoj moshchnosti i resursa [The use of hyper-heat-conducting structures in the development of leaky space vehicles of increased power and resource] // Tezisy dokladov 15-j Mezhdunarodnoj nauchnoj konferencii «Sistemnyj analiz, upravlenie i navigaciya» [Abstracts of the 17th International Scientific Conference «System analysis, management and navigation»]. Evpatoria, 2012, pp. 20–22. (In Russian)

[10] Kosenko V. E, Zvonary V. D., Suntsov S. B., Chebotarev V. E., Fatkulin R. F., Bakirov M. T., Derevyanko V. A., Makukha M. V. Rezul'taty primeneniya giperteploprovodyashchih struktur v apparature kosmicheskih apparatov [The Results of Using Heat-Conductive structures in the apparatus of spacecraft] // Tezisy dokladov 21-j Mezhdunarodnoj nauchnoj konferencii «Sistemnyj analiz, upravlenie i navigaciya» [Abstracts of the 21st International Scientific Conference «System analysis, management and navigation»]. MAI, 2016, pp. 45–47. (In Russian)



For citing this article

Chebotarev V.E., Derevyanko V.A., Makukha A.V., Bakirov M.T. Space experiment for precision thermal stabilization of quantum frequency standards for navigation satellites // Spacecrafts & Technologies, 2018, vol. 2, no. 4, pp. 187-191. doi: 10.26732/2618-7957-2018-4-187-191


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).