Article


Cover

№4 2018

Title

Polymer materials modified with boron carbide B4C and mechanocomposite B4C/W for radiation protection in spacecraft

Authors

1P.A. Vityaz, 1S.A. Kovaleva, 1V.I. Zhornik, 1M.A. Belotserkovskii, 2A.D. Dubinchuk, 3T.F. Grigoreva, 3N.Z. Lyakhov

Organizations

1The Joint Institute of Mechanical Engineering NAS of Belarus
Minsk, Belarus
2Belarusian State University
Minsk, Belarus
3Institute of Solid State Chemistry and Mechanochemistry SB RAS
Novosibirsk, Russian Federation

Abstract

Composites based on ultra-high molecular weight polyethylene, modified by nanoparticles of boron carbide B4C and composite B4C/W, for protection materials against fast and slow (thermal) neutrons and γ-radiation, are formed by mechanochemical synthesis in a high-energy planetary ball mill. Their phase composition and microstructural characteristics were studied by X-ray phase analysis (D8 Advance diffractometer, Bruker), electron microscopy (scanning electron microscope CamScan 4) and infrared Fourier spectroscopy (Fourier spectrometer Nikolet iS10). The joint mechanical treatment of ultra-high molecular weight polyethylene and boron carbide B4C powders in the planetary ball mill leads to the formation of polymer composite particles of scaly shape with random distribution of boron carbide particles in them and nanocrystalline iron evenly distributed in the polymer matrix in an amount of ~ 9 wt. %. In addition, the structure of boron carbide with a lower carbon content (B6.5C) is formed, and there is a break in the molecular chains of polyethylene and its amorphization. The combined processing of ultra-high molecular weight polyethylene and mechanocomposite B4C/W in a planetary ball mill leads to the formation of polymer composite particles of flake shape with a uniform distribution of boron and tungsten carbide particles in the polymer matrix. Parameters of fine structure of boron carbide B4C are changed. As a result of the interaction between the polymer matrix and the dispersed powders of the modifier, cross-linked structures are formed and the polymer is destroyed with a decrease in its molecular weight.

Keywords

ultra-high molecular weight polyethylene, boron carbide B4C, composite B4C/W, X-ray analysis, electron microscopy, infrared Fourier spectroscopy

References

[1] Yastrebinskaya A. V., Cherkashina N. I., Matyukhin P. V. Radiatsionno-zashchitnye nanonapolnennye polimery dlya kosmicheskikh system [Radiation-protective nano-filled polymers for space systems] // International journal of applied and fundamental research, 2015, no. 12, pp. 1191–1194. (In Russian)

[2] Vsyo o radiatsii i radiatsionnoy zashchite [All about radiation and radiation protection]. Available at: http://rad-stop.ru/shhit-ot-radiatsii (accessed 14.09.2018). (In Russian)

[3] Tcherdyntsev V. V., Kaloshkin S. D., Lunkova A. A., Musalitin A. M., Danilov V. D., Borisova Yu. V., Boykov A. A., Sudarchikov V. A. Structure, mechanical and tribological properties of radiation cross-linked ultrahigh molecular weight polyethylene and composite materials based on it // Journal of Alloys and Compounds, 2014, vol. 586, Suppl. 1, pp. S443–S445.

[4] Okhlopkova A. A., Petrova P. N., Popov S. N., Sleptsova S. A. Polimernye kompozitsionnye materialy tribotekhnicheskogo naznacheniya na osnove politetraftoretilena [Polymer composite materials for tribotechnical purpose based on polytetrafluoroethylene] // Russian chemical journal, 2008, vol. LII, no. 3, pp. 147–152. (In Russian)

[5] Kaloshkin S. D., Gorshenkov M. V., Cherdyntsev V. V., Gul’bin V. N., Boikov A. A. Radiatsionno-zashchitnyy material na polimernoy osnove s povyshennymi rentgenozashchitnymi svoystvami [Radiation-protective polymerbased material with increased x-ray and neutron protective properties]. Patent RU 2561989, 2015, bulletin no. 25.

[6] Kaloshkin S. D., Gorshenkov M. V., Cherdyntsev V. V., Gul’bin V. N., Boikov A. A. Sposob polucheniya radiatsionnozashchitnogo materiala na osnove sverkhvysokomolekulyarnogo polietilena s povyshennymi radiatsionnozashchitnymi svoystvami [Method for obtaining radiation-protective material based on ultra-high molecular weight polyethylene with increased radiation-protective properties]. Patent RU 2563650, 2015, bulletin no. 26.

[7] Wannasri S., Panina S. V., Ivanova L. R., Kornienko L. A., Piriyayon S. Increasing wear resistance of UHMWPE by mechanical activation and chemical modification combined with addition of nanofibers // Procedia Engineering, 2009, vol. 1, pp. 67–70.

[8] Domnich V., Reynaud S., Haber R. A., Chhowalla M. Boron Carbide: Structure, Properties, and Stability under Stress // Journal of the American Ceramic Society, 2011, vol. 94 (11), pp. 3605–3628.

[9] Aselage T. L., Tissot R. G. Lattice Constants of Boron Carbide // Journal of the American Ceramic Society, 1992, vol. 75 (8), pp. 2207–2212.

[10] Kuhlmann U., Werheit H., Schwetz K. A. Distribution of Carbon Atoms on the Boron Carbide Structure Elements // Journal of Alloys and Compounds, 1992, vol. 189, issue 2, pp. 249–258.

[11] Lifshits E. V., Shevyakova E. P., Ostapenko I. T., Bereznyak E. P., Saenko L. A. IK-spektroskopiya karbidov bora razlichnoy stekhiometrii [IR spectroscopy of boron carbides of different stoichiometry] // Problems of atomic science and technology, 2004, no. 3, pp. 19–22. (In Russian)

[12] Dechant J., Danz R., Kimmer W., Schmolke R. Infrakrasnaya spektroskopiya polimerov [Infrared spectroscopy of polymers]. Moscow, Khimiya Publ., 1976, 472 p. (In Russian)



For citing this article

Vityaz P.A., Kovaleva S.A., Zhornik V.I., Belotserkovskii M.A., Dubinchuk A.D., Grigoreva T.F., Lyakhov N.Z. Polymer materials modified with boron carbide B4C and mechanocomposite B4C/W for radiation protection in spacecraft // Spacecrafts & Technologies, 2018, vol. 2, no. 4, pp. 204-211. doi: 10.26732/2618-7957-2018-4-204-211


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).