Article


Cover

№4 2018

Title

Semiconductor vacuum technologies in space: history, status, prospects

Author

O.P. Pchelyakov

Organizations

1Rzhanov Institute of Semiconductor Physics SB RAS
Novosibirsk, Russian Federation
2Tomsk State University
Tomsk, Russian Federation

Abstract

In this paper we consider the background, history and prospects of the synthesis of multilayer semiconductor compositions from molecular beams in the orbital flight of spacecraft. The advantages of the technological process in a high vacuum formed as a result of the molecular screen effect for the production of new thin-film materials with unique properties are shown. The ground simulator of the space module and the operating model of the molecular screen are described. Discuss the characteristics of conceptual design of generic automated installation of molecular beam epitaxy. Modern high-performance solar cells (SE) are complex multilayer heterosystems. They consist of three main p-n junctions made of Ge, InGaAs, InGaP and connected in series by tunnel diodes. Since these materials are compatible by the crystal lattice constant, the heterostructures for SE based on them are grown in a single growth process on a germanium p-n transition substrate or on gallium arsenide. Nanotechnology is increasingly being used in this process. The most modern world record for the efficiency of three-pass solar cells with an efficiency of up to 44,5 % at solar radiation intensities of several hundred suns was achieved by Solar Junction, located in the Silicon valley, using molecular epitaxy. The ISP SB RAS is working on the development of high-performance and inexpensive equipment for ultra-high vacuum technology of molecular beam epitaxy of heterostructures for solar cells using space technologies.

Keywords

molecular beam epitaxy, semiconductor nanoheterostructures, solar cells, ultrahigh vacuum, space materials science

References

[1] Andreev V. M. Koncentratornaya solnechnaya fotoehnergetika [Concentrator solar photo-energy] // Alternative energy and ecology, 2012, vol. 5-6, pp. 40-44. (In Russian)

[2] Alferov Zh. I., Andreev V. M., Rumyantsev V. D. III-V Heterostructures in Photovoltaics. Concentrator Photovoltaic, Berlin Heidelberg, Springer-Verlag, 2007, pp. 25-50.

[3] Alferov Zh. I., Andreev V. M., Rumyantsev V. D. Tendencii i perspektivy razvitiya solnechnoj fotoehnergetiki [Tendencies and prospects for the development of solar photoenergy] // Physics and Technology of Semiconductors, 2004, vol. 38, issue 8, pp. 937–948. (In Russian)

[4] Laboratory of Molecular Beam Epitaxy. Available at: http://www.isp.nsc.ru/16/index_e.html (accessed: 12.09.2018).

[5] Valiev K., Orlikovsky A. Tekhnologii SBIS. Osnovnye tendencii razvitiya [VLSI Technologies. Major development trends] // Electronics. Science. Technology. Business, 1996, no. 5-6, pp. 3-10. (In Russian)

[6] Hueser J. E., Brock F. J. Theoretical Analysis of the Density Within an Orbiting Molecular Shield // J. Vac. Sci. Thechnol, 1976, vol. 13, no. 3, p. 702.

[7] Ignatiev A. The wake shield facility and space-based thin film science and technology // Earth Space Review, 1995, vol. 2, no. 2, pp. 10-17.

[8] News Briefs // Compound semiconductors, 1997, no. 1, p. 11.

[9] Neu G., Teisserire M., Freundlich A., Horton C., Ignatiev A. // Appl. Phys. Lett., 1999, vol. 74, no. 22, pp. 3341-3343.

[10] Naumann R. J. Na puti k absolyutnomu vakuumu [Towards an absolute vacuum] // Aerospace Engineering, 1987, no. 10, pp. 129-132. (In Russian)

[11] Grazhulis V. А. Tender GKNT RF po razrabotke SVV SZM [Tender of the State Committee for Science and Technology of the Russian Federation on the development of UHV SZM] // Promising technologies, 1996, vol. 3, issue 21, pp. 1-12. (In Russian)

[12] Blinov V. V., Zvorykin L. L., Ivanov A. I., Ignatiev A., Mashanov V. I., Nikiforov A. I., Preobrazhensky V. V., Pchelyakov O. P., Sokolov L. V. Ustrojstvo dlya vyrashchivaniya i obrabotki materialov v kosmicheskom prostranstve v usloviyah sverhvysokogo vakuuma i sposob ego ehkspluatacii (varianty) [Device for growing and processing materials in outer space under ultrahigh vacuum conditions and method of its operation (versions)]. Patent RU 2372259, 2009, bulletin no. 31.

[13] Blinov V. V., Zvorykin L. L., Ivanov A. I., Ignatiev A., Mashanov V. I., Nikiforov A. I., Preobrazhensky V. V., Pchelyakov O. P., Sokolov L. V. Ustrojstvo dlya molekulyarnoj luchevoj ehpitaksii materialov v kosmicheskom prostranstve i nazemnyj stend imitator dlya ispytaniya ustrojstva [A device for molecular beam epitaxy of materials in space and a ground stand simulator for testing devices] // Proceedings of the 18th scientific and technical conference «Vacuum Science and Technology», 2011, pp. 393-396. (In Russian)

[14] Pchelyakov O. P., Blinov V. V., Nikiforov A. I., Sokolov L. V., Zvorykin L. L., Ivanov A. I., Teslenko V. V., Churilo I. V., Zagrebelny A. A. Poluprovodnikovye vakuumnye tekhnologii v kosmicheskom prostranstve: istoriya, sostoyanie, perspektivy [Semiconductor vacuum technologies in outer space: history, status, prospects] // Surface. X-ray, synchrotron and neutron studies, 2004, no. 6, pp. 69-76. (In Russian)

[15] Blinov V. V., Konoshenko V. P., Alyamovskaya V. A., Ivanov A. I., Ignatiev A., Mashanov V. I., Nikiforov A. I., Preobrazhensky V. V., Pchelyakov O. P., Sokolov L. V. Ustanovka MLEH dlya vyrashchivaniya poluprovodnikovyh plenok i eyo integraciya na RS MKS [Installation of MBE for the cultivation of semiconductor films and its integration on the ISS RS] // Proceedings of the 20th scientific and technical conference «Vacuum Science and Technology», 2013, pp. 298-301. (In Russian)



For citing this article

Pchelyakov O.P. Semiconductor vacuum technologies in space: history, status, prospects // Spacecrafts & Technologies, 2018, vol. 2, no. 4, pp. 229-235. doi: 10.26732/2618-7957-2018-4-229-235


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).