Article


Cover

№1 2019

Title

Optical system of perspective led-based solar simulator for spacecraft ground testing applications

Authors

1,2A.A. Shevchuk, 3G.V. Dvirniy, 4G.G. Krushenko, 1,2V.V. Dvirniy, 5M.V. Elfimova

Organizations

1JSC Academician M. F. Reshetnev Information Satellite Systems
Zheleznogorsk, Krasnoyarsk region, Russian Federation
2Siberian Federal University
Krasnoyarsk, Russian Federation
3Reshetnev Siberian State University of Science and Technology
Krasnoyarsk, Russian Federation
4Institute of Computational Modelling SB RAS, FRC KSC SB RAS
Krasnoyarsk, Russian Federation
5Siberian Fire and Rescue Academy EMERCOM of Russia
Zheleznogorsk, Krasnoyarsk region, Russian Federation

Abstract

The transition to the production of new generation spacecraft requires a significant improvement in the methods and means of ground experimental testing, improving the accuracy of test equipment. One of the basic and most complex elements of the test equipment used in complex thermal vacuum testing of spacecraft is the solar simulator. Currently, a promising direction is the construction of solar simulators based on highly efficient LEDs that have significant advantages over traditional sources. Design of a highly efficient and at the same time compact optical system summing the emission of many individual LEDs of the LED array over the spectrum, angle and area into a uniform light field with minimal losses is the one of base tasks in development of adapted for ground testing spacecraft solar simulator. The article analyzes the mathematical modeling results of LED solar simulator's light source on the example of several models with different numbers of LEDs, both without optical elements, and with various primary optical elements. Results it follows that the LED solar simulator radiation must necessarily have, at a minimum, a primary optical system. The influence of the number, type and size of the primary optical elements in the matrix on the characteristics of the light flux is determined. The combined use of primary and secondary optical systems leads to a further light characteristics improvement of the LED solar simulator, but at the cost of some reduction in overall efficiency. In general, the characteristics of the modeled light source correspond or closely approach to required ones, which indicates that it is possible in principle to create a solar simulator based on LED sources for ground testing of spacecraft.

Keywords

spacecraft, ground testing, thermal vacuum testing, solar simulator, optical system, light emitting diode

References

[1] Krat S. A., Hristich V. V. Teplovakuumnaya otrabotka KA: razvitie sovremennyh tendencij [Spacecraft thermal vacuum optimization: development of new tendencies] // Vestnik SibGAU, 2010, no. 4, pp. 126-129. (In Russian)

[2] Aslanyan R. O., Anisimov D. I., Marchenko I. A., Panteleev V. I. Imitatory solnechnogo izlucheniya dlya termovakuumnyh ispytanij kosmicheskogo apparata [Solar simulators for thermal vacuum tests of spacecraft] // Siberian Journal of Science and Technology, 2017, vol. 18, no. 2, pp. 323-327. (In Russian)

[3] GOST R MEK 60904–9–2016. Pribory fotoelektricheskie. Chast’ 9. Trebovaniya k harakteristikam imitatorov solnechnogo izlucheniya [State Standard R IEC 60904–9–2016. Photovoltaic devices. Part 9. Solar simulator performance requirements]. Moscow, Standartinform Publ., 2017, 12 p. (In Russian)

[4] Reynolds K. LED-based sun-simulator design: technical and commercial considerations // Photonics Spectra, March 2015, pp. 54-58.

[5] Dvirniy G. V, Shevchuk A. A., Dvirniy V. V., Elfimova M. V., Krushenko G. G. Analiz vozmozhnosti sozdaniya imitatora solnechnogo izlucheniya na osnove svetodiodnyh istochnikov dlya nazemnoj otrabotki kosmicheskih apparatov [Analysis of LED-based solar simulator development capability for spacecraft ground testing application]. Siberian Journal of Science and Technology, 2018, vol. 19, no. 2, pp. 271–280. (In Russian)

[6] Aslanyan R. O., Marchenko I. A., Anisimov D. I. Razrabotka kompaktnyh istochnikov izlucheniya solnechnogo spektra [Designing small-sized solar spectrum thermal radiation sources]. Materialy XX Mezhdunarodnoj nauchnoj konferencii «Reshetnevskie chteniya» [Materials of the XX International Scientific Conference «Reshetnev Readings»]. JSC ISS-Reshetnev. Krasnoyarsk, 2016, pp. 436–437. (In Russian)

[7] Plita F. Optical design of a fully LED-based solar simulator. PhD thesis. Loughborough, Loughborough University, July 2015. 186 p.

[8] Bayneva I. I., Baynev V. V. Opticheskie sistemy dlya svetodiodov [Optical systems for light-emitting diodes] // Photonics, 2016, no. 2, pp. 84–93. (In Russian)

[9] Chen J.-J., Wang T.-Y., Huang K.-L., Liu T.-S., Tsai M.-D., Lin C.-T. Freeform lens design for LED illumination // Optics Express, May, 2012, vol. 20, no. 10, pp. 10984-10995.

[10] Moiseyev M. A., Borisova K. V., Byzov E. V., Doskolovich L. L. Optimizacionnyj metod dlya rascheta TIR opticheskih ehlementov, vklyuchayushchij proceduru bystroj trassirovki luchej [Optimization method for computation of TIR optical elements based on quick raytracing procedure] // Computer optics, 2013, vol. 37, no. 1, pp. 51–58. (In Russian)

[11] Andreeva K. V., Moiseev M. A., Kravchenko S. V., Doskolovich L. L. Metod rascheta opticheskih ehlementov s poverhnost'yu svobodnoj formy, rabotayushchih po principu polnogo vnutrennego otrazheniya [Design of optical elements with TIR free-form surface] // Computer optics, 2016, vol. 40, no. 4, pp. 467-474. (In Russian)

[12] Doskolovich L. L., Borisova K. V., Moiseyev M. A. Raschet zerkala dlya formirovaniya zadannogo nepreryvnogo raspredeleniya osveshchennosti na osnove metoda soglasovannyh kvadrik [Design of a mirror for generating a prescribed continuous illuminance distribution based on the supporting quadric method]. Computer optics, 2015, vol. 39, no. 3, pp. 347-356. (In Russian)

[13] Bayneva I. I. Modelirovanie svetovyh priborov v programmnom komplekse TRACEPRO [Modelling of light devices in the program complex TRACEPRO]. Materialy XIII Vserossijskoj nauchno-tekhnicheskoj konferencii «Problemy i perspektivy razvitiya otechestvennoj svetotekhniki, ehlektrotekhniki i ehnergetiki» [Matherials XIII All-Russian Scientific Conference «Problems and perspectives of the development of domestic lightings, electronics and energy»]. AU «Tekhnopark Mordoviya». Saransk, 2017, pp. 202–208. (In Russian).

[14] Hecht E. Optics (5th Edition). Harlow, Pearson Education, 2017. 729 p.

[15] Vu N. H., Pham T. T., Shin S. LED uniform illumination using double linear fresnel lenses for energy saving // Energies, 2017, no. 10 (12), 2017, pp. 1–15. doi:10.3390/en10122091

[16] Dickey F. M., Holswade S. C., Shealy D. L. Laser Beam Shaping Applications. CRC Press, Taylor & Francis Group, 2005. 376 p.



For citing this article

Shevchuk A.A., Dvirniy G.V., Krushenko G.G., Dvirniy V.V., Elfimova M.V. Optical system of perspective led-based solar simulator for spacecraft ground testing applications // Spacecrafts & Technologies, 2019, vol. 3, no. 1, pp. 28-40. doi: 10.26732/2618-7957-2019-1-28-40


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).