Article


Cover

№2 2019

Title

Modernization of time scale control unit for «Glonass-K2» spacecrafts

Authors

M.N. Utkin, A.G. Saybel

Organization

JSC «Russian Institute of Radionavigation and Time»
Saint-Petersburg, Russian Federation

Abstract

Navigation spacecraft’s atomic clocks suffer from sudden small frequency jumps. These jumps lead to a decrease of user’s positioning accuracy and should be considered. Traditional method to detect these frequency jumps with the use of ground control segment does not ensure early user alert of increasing range error. A perspective way to improve global navigation satellite system’s signal integrity is the use of satellite on-board autonomous system for continuous control of board synchronization equipment time scale. This paper describes a novel diagram of frequency comparator – the main element of such system. The main difference of proposed solution is an application of time-to-digital converter for estimation of time error which allows to decrease mass, dimensions and power consumption. The paper deals with the particularities of direct frequency comparator implementation for on-board equipment of space vehicle and describes structure of implemented breadboard model.

Keywords

frequency jumps, time-to-digital conversion, frequency comparator, self-calibration

References

[1] Wang Q., Rochat P. An anomaly clock detection algorithm for a robust clock ensemble // 41st Annual Precise Time and Time Interval Meeting. 2009, pp. 121–129.

[2] GLONASS. Interfeisnii control’nii document. Navigacionnii radiosignal v diapazonah L1, L2 (redakciya 5.1) [GLONASS. Interface control document. Navigation signals in L1, L2 bands (ver. 5.1)]. Moscow, RNIIKP, 2008, 72 p. (In Russian)

[3] GOST 8.567-2014 Izmerenie vremeni i chastoti. Termini i opredeleniya [GOST 8.567-2014 Time and frequency measurements. Terms and definitions]. Мoscow, Standartinform, 2014, 16 p. (In Russian)

[4] Handbook of frequency stability analysis : NIST Special Publication 1065 / W. J. Riley. Gaithersburg : NIST, 2008, 136 p.

[5] Glukhova S. A., Tiunov V. V., Khoronjevckiy I. S. Mikroshemi integral’nie. Tsifro-analogovie i analogo-tsifrovie preobrazovateli [Integrated circuits. Digital-to-analog and analog-to-digital converters]. Moscow, Deiton, 2018, 211 p. (In Russian)

[6] Utkin M. N. Matematicheskaya model’ chastotnogo komparatora na osnove preobrazovatelia «vremennoi interval – tsifrovoi kod», uchitivaushaiya nelineinie staticheskie harakteristiki preobrazovatelia [Mathematical model of frequency comparator based on time-to-digital converter which accounts for nonlinear static characteristics of converter] // Tezisy dokladov IX Mezdunarodnogo simposiuma «Metrologia vremeni i prostranstva» [Abstracts of the IX International Symposium «Metrology of time and space»]. FSUE «VNIIFTRI», 2018. (In Russian)

[7] Time-to-Digital Converters / S. Henzler. Netherlands : Springer, 2010. 124 p.

[8] Wey H. M., Guggenbuhl W. Noise Transfer Characteristics of a Correlated Double Sampling Circuit // IEEE Transactions on Circuits and Systems, 1986, vol. 1, no. 10, pp. 1028–1030.

[9] Samarah A., Carusone A. C. A Digital Phase-Locked Loop with Calibrated Coarse and Stochastic Fine TDC // IEEE Journal of Solid-State Circuits, 2013, vol. 48, pp. 1829–1841.

[10] Ito S., Nishimura S., Kobayashi H., Uemori S., Tan Y., Takai N., Yamaguchi T. J., Niitsu K. Stochastic TDC architecture with self-calibration // IEEE Asia Pacific Conference on Circuits and Systems, 2010, pp. 1027–1030.

[11] Lee M., Abidi A. A. A 9 b, 1.25 ps Resolution Coarse–Fine Time-to-Digital Converter in 90 nm CMOS that Amplifies a Time Residue // IEEE Journal of Solid State Circuits, 2008, vol. 43, pp. 769–777.

[12] Utkin M. N. Ustroistvo preobrazovaniya vremennih intervalov v tsifrovoi kod s avtokalibrovkoi [Time-to-digital converter with autocalibration]. Patent RU 171560, 2017, bulletin no. 16.



For citing this article

Utkin M.N., Saybel A.G. Modernization of time scale control unit for «Glonass-K2» spacecrafts // Spacecrafts & Technologies, 2019, vol. 3, no. 2, pp. 94-100. doi: 10.26732/2618-7957-2019-2-94-100


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).