Article


Cover

№3 2019

Title

Design of the mirror antenna of a spacecraft with the ultralight high precision size-stable reflector

Authors

1V.B. Taygin, 2,3А.V. Lopatin

Organizations

1JSC Academician M. F. Reshetnev Information Satellite Systems
Zheleznogorsk, Krasnoyarsk region, Russian Federation
2Reshetnev Siberian State University of Science and Technology
Krasnoyarsk, Russian Federation
3Institute of Computational Technologies of SB RAS
Krasnoyarsk, Russian Federation

Abstract

The paper discusses the existing design of mirror antennas used on spacecraft. The requirements are formulated under which the reliable performance of antennas is ensured under operating conditions. Innovative construction of the space high frequency axisymmetric mirror antenna of an ultralight class is presented. Antenna’s body consists of several conjugate carbon fiber shells. Antenna’s design technology which gives an opportunity to create the shell of a reflector with minimal deflection from a full-paraboloid is developed. Using the finite element method, a parametric modal analysis of the antenna is performed. Based on this analysis, geometric parameters were determined that provide optimal mechanical and mass characteristics of the structure. The calculation results were used to create a prototype mirror antenna. It is shown that the created antenna possesses the parameters required for generation of the high-directional electromagnetic emission of Q and V frequency domain. Successful ground experimental perfection of the construction of the antenna is made. It included the stages of mechanical, thermal vacuum, and radio engineering tests. The proposed design can be used to create advanced spacecraft.

Keywords

reflector antenna for spacecraft, CFRP, ground experimental testing, autoclave, forming mandrel, finite element method

References

[1] Nastran MSC. Quick reference guide. USA, MSC Software Corporation, 2011.

[2] Wood P. Analiz i proektirovanie zerkal'nyh antenn, perevod s anglijskogo [Analysis and design of mirror antennas, translation from English]. Moscow, Radio and communication, 1984. 208 p. (In Russian)

[3] Galimov G. K. Obshchaya teoriya zerkal'nyh antenn, T. 1 [General theory of mirror antennas, vol. 1]. Moscow, Advantsed Solutions, 2017. 704 p. (In Russian)

[4] Chebotarev V. E., Kosenko V. E. Osnovy proektirovaniya kosmicheskikh apparatov informatsionnogo obespecheniya [Fundamentals of spacecraft design information support]. Krasnoyarsk, SibGAU Publ., 2011. 488 p. (In Russian)

[5] Gushchin V. N. Osnovy ustrojstva kosmicheskih apparatov, uchebnik dlya vuzov [Fundamentals of spacecraft, textbook for universities]. Мoscow, Mashinostroenie, 2003. 272 p. (In Russian)

[6] Testoedov N. A., Lysenko E. A., Burns V. A. Diagnostika konstrukcij kosmicheskih apparatov po rezul'tatam vibracionnyh i akusticheskih ispytanij, monografiya [Diagnostics of spacecraft structures based on the results of vibration and acoustic tests, monograph]. Krasnoyarsk, Siberian State Aerospace University, 2016. 203 p. (In Russian)

[7] Vashukov Yu. A. Tekhnologiya raketnyh i aerokosmicheskih konstrukcij iz kompozitnyh materialov, mul'timedijnyj obrazovatel'nyj modul' [Technology of rocket and aerospace structures from composite materials, a multimedia educational module]. Samara, Publishing house of Samara State Aerospace University, 2012. 185 p. (In Russian)

[8] Imbriale W. A., Gao S., Boccia L. Space Antenna Handbook. John Wiley & Sons Ltd., 2012. 744 p.

[9] Macdonald M., Badescu V. The International Handbook of Space Technology. UK, Chichester, Springer-Verlag Berlin Heidelberg, Jointly published with Praxis Publishing, 2014, 731 p. doi: 10.1007/978-3-642-41101-4

[10] Afanasyev V. K., Popova M. V., Gladyshev S. A., Herzen V. V., Obukhov G. V., Gorshenin A. V. Invary, uchebnoe posobie [Invars, textbook]. Novokuznetsk, SibGIU, 2006. 126 p. (In Russian)

[11] Chichurin V. E., Taigin V. B., Nagovitsyn A. V., Bolgov V. V., Patraev E. V., Mikhnev M. M. Precizionnyj reflektor i sposob ego izgotovleniya [Precision reflector and method for its manufacture]. Patent RF, no. 2571718, 2015.

[12] Morozov E. V., Lopatin A. V., Taygin V. B. Design, fabrication and testing of composite sandwich integral structure of spacecraft antenna // Composite Structures, 2015, no. 134, pp. 645–653.

[13] Morozov E. V., Lopatin A. V., Taygin V. B. Design, analysis, manufacture and testing of composite corrugated horn for the spacecraft antenna system // Composite Structures, 2016, no. 136, pp. 505–512.

[14] Chen Z. N., Liu D., Nakano H., Qing X., Zwick Th. Handbook of Antenna Technologies, 2016. 3473 p.

[15] Vasiliev V. V., Morozov E. V. Advanced mechanics of composite materials and structural elements. 3rd ed. Kidlington, Oxford, Elsevier, 2013. 818 p.



For citing this article

Taygin V.B., Lopatin А.V. Design of the mirror antenna of a spacecraft with the ultralight high precision size-stable reflector // Spacecrafts & Technologies, 2019, vol. 3, no. 3, pp. 121-131. doi: 10.26732/2618-7957-2019-3-121-131


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).