№3 2019


Attitude control and determination algorithms for the spacecraft with two flexible appendages


1D.S. Ivanov, 2S.V. Meus, 1A.B. Nuralieva, 2A.V. Ovchinnikov, 1M.Yu. Ovchinnikov, 1D.S. Roldugin, 1S.S. Tkachev, 1A.I. Shestoperov, 1S.A. Shestakov, 2E.N. Yakimov


1Keldysh Institute of Applied Mathematics of RAS
Moscow, Russian Federation
2JSC Academician M. F. Reshetnev Information Satellite Systems
Zheleznogorsk, Krasnoyarsk region, Russian Federation


The paper covers the attitude control and determination algorithms of the satellite equipped with two flexible appendages. One of the appendages is an antenna. It is connected to the satellite bus inelastically. The antenna itself is a major disturbance factor. Its dimensions by far exceed the dimensions of the bus, and the eigen frequencies of the antenna oscillations are low. The second appendage is a solar panel. The spacecraft moves on the geostationary orbit. The panel is connected via the one degree of freedom hinge. It rotates with the constant rate to provide continuous solar panel attitude towards the Sun. Attitude control and determination is achieved with the hardware installed on the satellite bus only. Moreover, the oscillations of the flexible elements have no natural damping. The control and determination algorithms are provided that stabilize the satellite bus and reduce the flexible appendages oscillations alongside. Special control algorithm is proposed that does not excite the oscillations and lowers the computational burden on the onboard computer. Different eigen forms are considered to represent the error in the appendages models.


spacecraft, attitude control, flexible appendages, finite element model, eigen forms


[1] Banichuk N. V., Karpov I. I., Klimov D. M., Markeev A. P., Sokolov B. N., Sharanyuk A. V. Mekhanika bol'shih kosmicheskih konstrukcij [Mechanics of large space structures]. Moscow, Factorial, 1997, 330 p. (In Russian)

[2] Junkins J., Kim Y. Introduction to Dynamics and Control of Flexible Structures. Washington : AIAA Education Series, 1993. 452 p.

[3] Ivanov D., Koptev M., Ovchinnikov M., Tkachev S., Proshunin N., Shachkov M. Flexible microsatellite mock-up docking with non-cooperative target on planar air bearing test bed // Acta Astronaut, 2018, vol. 158, pp. 357–366.

[4] Gasbarri P., Monti. R., de Angelis C., Sabatini M. Effects of uncertainties and flexible dynamic contributions on the control of a spacecraft full-coupled model // Acta Astronaut, 2014, vol. 94, issue 1, pp. 515–526.

[5] da Fonseca I. M., Bainum P. M., da Silva A. R. Structural control interaction for an LSS attitude control system using thrusters and reaction wheels // Acta Astronaut, 2007, vol. 60, no. 10–11, pp. 865–872.

[6] Hughes P. C., Abdel-Rahman T. M. Stability of Proportional-Plus-Derivative-Plus-Integral Control of Flexible Spacecraft // J. Guid. Control. Dyn., 1979, vol. 2, no. 6, pp. 499–503.

[7] Wang S. J., Cameron J. M. Dynamics and control of a large space antenna // J. Guid. Control. Dyn., 1984, vol. 7, no. 1, pp. 69–76.

[8] Hu Q. Variable structure maneuvering control with time-varying sliding surface and active vibration damping of flexible spacecraft with input saturation // Acta Astronaut, 2009, vol. 64, no. 11–12, pp. 1085–1108.

[9] Somov E. Robastnaya stabilizaciya uprugih kosmicheskih appratov pri nepolnom diskretnom izmerenii i zapazdyvanii v upravlenii [Robust stabilization of elastic space devices with incomplete discrete measurement and delay in control] // Bulletin of the Russian Academy of Sciences. Theory and control systems, 2001, no. 2, pp. 124–143. (In Russian)

[10] Gasbarria P., Montia R., Campolo G., Toglia Ch. Control-oriented modelization of a satellite with large flexible appendages and use of worst-case analysis to verify robustness to model uncertainties of attitude control // Acta Astronaut, 2012, vol. 81, no. 1, pp. 214–226.

[11] Wang W., Menon P., Bates D., Bennani S. Verification and Validation of Attitude and Orbit Control Systems for Flexible Satellites // AIAA Guidance, Navigation and Control Conference, 2009.

[12] Wang S. J., Lin Y. H., Ih C.-H. C. Dynamics and control of a Shuttle-attached antenna experiment // J. Guid. Control. Dyn., 1985, vol. 8, no. 3, pp. 344–353.

[13] Santini P., Gasbarri P. General background and approach to multibody dynamics for space applications // Acta Astronaut, 2009, vol. 64, no. 11–12, pp. 1224–1251.

[14] Meirovitch L., Quinn R. D. Equations of Motion for Maneuvering Flexible Spacecraft // J. Guid. Control, 1987, vol. 10, no. 5, pp. 453–465.

[15] Ovchinnikov M. Yu., Tkachev S. S., Roldugin D. S., Nuralieva A. B., Mashtakov Y. V. Angular motion equations for a satellite with hinged flexible solar panel // Acta Astronaut, 2016, vol. 128, pp. 534–539.

[16] Sesak J. R., Coradetti T. Decentralized Control of Large Space Structures via Forced Singular Perturbation // AIAA 17th Aerospace Sciences Meeting, New Orleans, 1979.

[17] Sesak J. R. Control of Large Space Structures via Singular Perturbation Optimal Control // AIAA Conf. on Space Platforms: Future Needs and Capabilities, Los Angeles, 1978.

[18] Ivanov D. S., Ovchinnikov M. Yu, Ivlev N. A., Karpenko S. O. Analytical study of microsatellite attitude determination algorithms // Acta Astronaut, 2015, vol. 116, pp. 339–348.

[19] Ivanov D. S., Ovchinnikov M. Y., Shestakov S. A., Meus S. V., Ovchinnikov A. V., Yakimov E. N. Methods for the vibration determination and parameter identification of spacecraft with flexible structures // Journal of Computer and Systems Sciences International, 2017, vol. 56, no. 2, pp. 311–327.

For citing this article

Ivanov D.S., Meus S.V., Nuralieva A.B., Ovchinnikov A.V., Ovchinnikov M.Yu., Roldugin D.S., Tkachev S.S., Shestoperov A.I., Shestakov S.A., Yakimov E.N. Attitude control and determination algorithms for the spacecraft with two flexible appendages // Spacecrafts & Technologies, 2019, vol. 3, no. 3, pp. 132-139. doi: 10.26732/2618-7957-2019-3-132-139