Article


Notice: Undefined offset: 1 in /home/c19009/journal-niss.ru/docs/en/archive_view.php on line 269

Cover

№3 2019

Title

Calculation and experimental assessment of the strength and limit states of composite structures for spacecraft

Authors

V.V. Moskvichev, A.M. Lepikhin, A.E. Burov, S.V. Doronin, E.V. Moskvichev

Organization

Institute of Computational Technologies of SB RAS, Krasnoyarsk, Russian Federation


Abstract

Modern polymer composite materials with high specific characteristics of strength and stiffness allow creating strong, durable and geometrically stable space structures. To expand the scope of application of composite materials and increase the competitiveness of space structures, it is necessary to further improve design methods with the widespread use of multiscale computational modeling of deformation and fracture processes. The paper presents the results of analysis on the strength and dimensional stability of structures made of polymer composites. A metal-composite high-pressure tank for electric propulsion systems and the design of precision reflectors for space- and ground-based antennas are considered. The methods and results of experimental and computational studies on the stress-strain and ultimate states of structures are described. The methods and means of non-destructive testing, the results of the analysis on the stress-strain state and full-scale tests of the tank structure are described. Generalized estimates of the load-carrying capacity of reflector structures under given operating conditions are given.

Keywords

composite structures, strength, service life, experimental investigations, numerical analysis, stress-strain state

References

[1] Vasiliev V. V. Composite Pressure Vessels: Analysis, Design, and Manufacturing. Blacksburg, VA : Bull Ridge Publishing, 2009. 690 p.

[2] Azarov A. V., Babichev A. A., Sin'kovskiy F. K. Proyektirovaniye i izgotovleniye kompozitnogo baka vysokogo davleniya dlya kosmicheskogo apparata [Design and manufacture of a composite high-pressure tank for a spacecraft] // Composites and Nanostructures, 2013, no. 4, pp. 44–57. (In Russian)

[3] Lepikhin A. M., Moskvichev V. V., Chernyayev A. P., Pokhabov Yu. P., Khalimanovich V. I. Eksperimental'naya otsenka prochnosti i germetichnosti metallokompozitnykh sosudov vysokogo davleniya [Experimental evaluation of the strength and tightness of metal composite pressure vessels] // Deformatsiya i razrusheniye materialov, 2015, no. 6, pp. 30–36. (In Russian)

[4] Lepikhin A. M., Moskvichev V. V., Burov A. E., Aniskovich Ye. V., Chernyayev A. P., Khalimanovich V. I. Eksperimental'nyye issledovaniya prochnosti i resursa metallokompozitnykh bakov vysokogo davleniya [Experimental studies of the strength and life of metal composite pressure tanks] // Industrial Laboratory. Diagnostics of Materials, 2019, vol. 85, no. 1, pp. 49–56. (In Russian)

[5] Lepikhin A. M., Moskvichev V. V., Chernyaev A. P. Acoustic-Emission Monitoring of the Deformation and Fracture of Metal–Composite Pressure Vessels // Journal of Applied Mechanics and Technical Physics, 2018, vol. 59, issue 3, pp. 511–518.

[6] Lepikhin A. M., Burov A. E., Moskvichev V. V. Possibilities of the design estimates of the reliability of a high-pressure metal-composite tank // Journal of Machinery Manufacture and Reliability, 2015, vol. 44, issue 4, pp. 344–349.

[7] Burov A. E., Lepikhin A. M. Numerical simulation of carrying capacity of the high-pressure metal composite vessel // Journal of Machinery Manufacture and Reliability, 2016, vol. 45, issue 5, pp. 443–450.

[8] Amelina E. V., Burov A. E., Golushko S. K., Lepikhin A. M., Moskvichev V. V., Yurchenko A. V. Raschetnoeksperimental'naya otsenka prochnosti metallokompozitnogo baka vysokogo davleniya [Calculation and experimental assessment of the strength of a metal composite high pressure tank] // Computational Technologies, 2016, vol. 21, no. 5, pp. 3–21. (In Russian)

[9] Burov A. E., Lepihin A. M., Makhutov N. A., Moskvichev V. V. Numerical Analysis of Stress-Strain State and Strength of Metal Lined Composite Overwrapped Pressure Vessel // Strength of Materials, 2017, vol. 49, issue 5, pp. 666–675.

[10] Doronin S. V., Moskvichev V. V. Decomposition of design analysis problems of precision structures of large reflectors // Journal of Machinery Manufacture and Reliability, 2018, vol. 47, no. 1, pp. 28–34.

[11] Doronin S. V. Projections of Limiting States for Load-Bearing Structures of Reflectors Made of Polymer Composites // AIP Conference Proceedings, 2017, vol. 1915, issue 1, 040008.

[12] Doronin S. V., Reizmunt E. M., Filippova Y. F. Design Evaluation of Safety Factors for Reflector Skeleton Made of Polymer Composites // AIP Conference Proceedings, 2017, vol. 1915, 040009.

[13] Doronin S. V., Rogalev A. N. Numerical approach and expert estimation of multi-criteria optimization of precision constructions // CEUR Workshop Proceedings, 2018, vol. 2098, pp. 323–337.

[14] Doronin S. V., Reyzmunt E. M. Investigation of free oscillations for reasoning constructive decisions of mirror segments of parabolic antenna // Journal of Physics: Conference Series, 2018, vol. 1050, issue 1, 012021.

[15] Reyzmunt E. M., Doronin S. V. Numerical analysis of thermal deformation for constructive variants of mirror segments in a parabolic antenna // Journal of Physics: Conference Series, 2018, vol. 1050, issue 1, 012069.

[16] Lepikhin A. M., Burov A. E., Pokhabov Yu. P. Estimation of the failure-free operation for deployment of transformable space structures // Journal of Physics: Conference Series, 2018, vol. 1050, 012042.

[17] Moskvichev E. V., Khakhlenkova A. A. Analyzing the Surface Accuracy of a Rigid Reflector under Mechanical and Thermal Loading // AIP Conference Proceedings, 2017, vol. 1915, 040041.

[18] Burov A. E., Burova O. G. Multiscale Modelling the Deformation and Failure of Composite Structures // AIP Conference Proceedings, 2018, vol. 2053, 040013.

[19] Moskvichev E. V., Larichkin A. Y. Experimental studies on the mechanical properties of a woven composite material for space antenna reflector // Journal of Physics: Conference Series, 2018, vol. 1050, 012056.



For citing this article

Moskvichev V.V., Lepikhin A.M., Burov A.E., Doronin S.V., Moskvichev E.V. Calculation and experimental assessment of the strength and limit states of composite structures for spacecraft // Spacecrafts & Technologies, 2019, vol. 3, no. 3, pp. 140-148. doi: 10.26732/2618-7957-2019-3-140-148


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).