№1 2020


Growing semiconductor structures for high-performance solar cells in open space


1V.V. Blinov, 2V.M. Vladimirov, 3N.A. Kushnarev, 1A.I. Nikiforov, 1D.B. Pridachin, 1D.O. Pchelyakov, 1O.P. Pchelyakov, 4V.A. Skorodelov, 1L.V. Sokolov


1Rzhanov Institute of Semiconductor Physics SB RAS
Novosibirsk, Russian Federation
2LLC NPF Electron
Krasnoyarsk, Russian Federation
3Central Research Institute of Infocommunication Technologies and Safety Problems «Nika»
Lyubertsy, Moscow region, Russian Federation
4JSC «Scientific and Production Association «Molniya»
Moscow, Russian Federation


Practical space activities of the country in near-Earth space and in deep space have been developing for more than fifty years. During this time, many new scientific and technical problems were solved, the latest technologies were developed and mastered. This article describes the prerequisites for conducting an experiment on growing semiconductor structures for highly efficient solar cells in the conditions of orbital flight of an international space station. The advantages of carrying out the process in a deep vacuum formed as a result of the manifestation of the molecular screen effect are shown to obtain new thin-film materials with unique properties. A ground-based simulator of a space module and a working molecular screen prototype are described. The features of the preliminary design of a universal automated installation of molecular beam epitaxy in space are discussed. The rationale for the economic efficiency of space technology based on the absence of the need for expensive ultrahigh vacuum pumping facilities, cryogenic equipment and vacuum volumes containing a large amount of stainless steel is given. The experience of three orbital flights of the American Shuttle spacecraft is analyzed, confirming the economic feasibility of projects related to the production of semiconductor heterostructures in space flight conditions.


space materials science, molecular beam epitaxy, molecular screen, orbital flight, ultrahigh vacuum


[1] Andreev V. M. Koncentratornaya solnechnaya fotoehnergetika [Concentrator solar photo-energy] // Alternative energy and ecology, 2012, vol. 5-6, pp. 40-44. (In Russian)

[2] Alferov Zh. I., Andreev V. M., Rumyantsev V. D. III-V Heterostructures in Photovoltaics. Concentrator Photovoltaic, Berlin Heidelberg, Springer-Verlag, 2007, pp. 25-50.

[3] Alferov Zh. I., Andreev V. M., Rumyantsev V. D. Tendencii i perspektivy razvitiya solnechnoj fotoehnergetiki [Tendencies and prospects for the development of solar photoenergy] // Physics and Technology of Semiconductors, 2004, vol. 38, issue 8, pp. 937–948. (In Russian)

[4] Pchelyakov O. P., Sokolov L. V., Nikiforov A. I., Berzhaty V. I., Zvorykin L. L., Ivanov A. I., Nikitsky V. P., Antropov V. Yu., Biriukov V. M., Markov E. V., Djakov Yu. N. Epitaxy of compound semiconductor from molecular beams in space vacuum behind molecular shield. // Proc. of Joint X Europ. and VI Russian symp. on Phys. Sci. in Microgravity, 1997, vol. II, pp. 144-149.

[5] Pchelyakov O. P., Blinov V. V., Nikiforov A. I., Sokolov L. V., Zvorykin L. L., Ivanov A. I., Teslenko V. V., Churilo I. V., Zagrebel’nyi A. A. Semiconductor Vacuum Technologies in Space: Hystory, State and Prospects. Poverhnost’(Rus), 2004, vol. 6, pp. 69-76.

[6] Pridachin D., Pchelyakov O., Nikiforov A., Sokolov L., Preobrazhenskii V., Blinov V. Some design and applying aspects of Molecular Beam Epitaxy (MBE) machine Main Units in Ultra-Vacuum of Space. Proc. of European Planetary Science Congress, Riga, Latvia, 2017.

[7] Kostoff R. N. Stimulating Innovation. International Handbook of Innovation, Elsevier Social and Behavioral Sciences, Oxford, UK, 2003, pp. 388-400.

[8] Ignatiev A. The wake shield facility and space-based thin film science and technology // Earth Space Revew, 1995, vol. 2, no. 2, pp. 10-17.

[9] Ignatiev A., Freundlich A., Pchelyakov O., Nikiforov A., Sokolov L., Pridachin D., Blinov V. Molecular Beam Epitaxy in the Ultravacuum of Space: Present and Near Future // From Research to Mass Production, 2018, pp. 741–749. doi: 10.1016/B978-0-12-812136-8.00035-9

[10] Zaklyuchenie na tekhnicheskoe predlozhenie NPO «Molniya» na «Mnogocelevoj aviacionno-kosmicheskoj sisteme (MAKS)» po teme «Sistemnye issledovaniya i kompleksnoe obosnovanie tekhnicheskogo oblika, harakteristik i oblastej racional'nogo ispol'zovaniya perspektivnyh mnogorazovyh kosmicheskih transportnyh sistem» [Conclusion on the technical proposal of the Molniya NGO on the Multipurpose Aerospace System (MAKS) on the topic «Systemic research and comprehensive justification of the technical appearance, characteristics and areas of rational use of promising reusable space transport systems»] / Research «Orel», TsAGI, TsNIImash, 1998. (In Russian)

[11] Parkinson R. C. Multi-purpose aerospace system. Report in ESA, ESTEC and BNSC, British Aerospace, 1992.

[12] Kramer P. The Russian/Ukrainian Multi Role Space Transport System. DARA – Diskussionskreis, Transportsystem, Bonn, 1994.

[13] Ispol'zovanie nauchno-tekhnicheskogo zadela po OK «Buran» v chasti ocenki effektivnosti primeneniya samoletatransportirovshchika OK «Buran» dlya sverhtyazhelyh aviacionnyh perevozok i dlya zadach kosmicheskoj transportnoj sistemy [The use of scientific and technical groundwork for OK «Buran» in terms of assessing the effectiveness of the use of a carrier aircraft of OK «Buran» for super-heavy air transportation and for the tasks of the space transport system] / Research «Efficiency». Scientific and technical report. Russian Academy of Engineering, Moscow, 1999. (In Russian)

[14] Lozino-Lozinsky G., Skorodelov V., Shkadov L., Plokhikh V. Reasons for decisions made on the MAKS project / 49th International astronautical congress, Melbourne, Australia, 1998.

[15] Skorodelov V. A., Pchelyakov O. P. Fundamental'naya nauka otkryvaet put' k promyshlennomu osvoeniyu kosmosa [Basic science opens the way to industrial space exploration] // Integral, 2009, no. 3, pp. 4-7. (In Russian)

For citing this article

Blinov V.V., Vladimirov V.M., Kushnarev N.A., Nikiforov A.I., Pridachin D.B., Pchelyakov D.O., Pchelyakov O.P., Skorodelov V.A., Sokolov L.V. Growing semiconductor structures for high-performance solar cells in open space // Spacecrafts & Technologies, 2020, vol. 4, no. 1, pp. 45-54. doi: 10.26732/

Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).