№2 2020


Analysis of the effectiveness of the de-orbiting devices for small satellite


G.P. Anshakov, A.V. Krestina, I.S. Tkachenko


Samara National Research University
Samara, Russian Federation


At present, the use of various methods is proposed for the de-orbit of small satellite, and the most feasible and promising of them are analyzed. The task of evaluating the effectiveness of the de-orbiting system for small satellite is set, in the framework of which a criterion and basic performance indicators are formed taking into account design features. As a methodological basis for evaluating the effectiveness, the method of relative integral assessment was used. Using the developed algorithm for calculating the coefficients of the integral relative assessment for each de-orbiting method, the most effective option for constructing the system isdetermined for given priority coefficients and taking into account the imposed design restrictions. For the analysis of efficiency, fuel-free de-orbiting devices and three types of propulsion systems were chosen – electric propulsion engine, solid rocket motor and liquid engine. Efficiency analysis was carried out for devices with various mass and target characteristics, the result is the choice of the type of de-orbiting system and the calculation of its parameters. The dependence of the de-orbiting device on the purpose of the spacecraft, the altitude and inclination of the orbit of its functioning, as well as on the requirements for mass, cost and other design parameters is shown.


small satellite, space debris, de-orbiting system, efficiency mark, relative integral estimation method


[1] IADC Space Debris Mitigation Guidelines. Avialable at: (accessed 11.02.2019)

[2] Space debris mitigation guidelines developed by the Inter-Agency Space Debris Coordination Committee. Avialable at: (accessed 11.02.2019).

[3] Pikalov R. S., Yudincev V. V. Obzor i vybor sredstv uvoda krupnogabaritnogo kosmicheskogo musora [Bulky space debris removal means review and selection] // Trudy MAI, 2018, no. 100. Avialable at: (accessed 20.04.2020). (In Russian)

[4] Aslanov V. S., Ledkov A. S. Dynamics of tethered satellite systems. Cambridge: Woodhead Publishing, 2012. 331 p.

[5] Baranov A. A., Grishko D. A., Medvedevskih V. V., Lapshin V. V. Reshenie zadachi oblyota ob"ektov krupnogabaritnogo kosmicheskogo musora na solnechno-sinhronnyh orbitah [Solution of the flyby problem for large space debris at sun-synchronous orbits] // Cosmic Research, 2016, vol. 54, no. 3, pp. 242–251.

[6] Ulybyshev S. Yu. Matematicheskoe modelirovanie i sravnitel'nyj analiz skhem primeneniya apparata-buksirovshchika dlya resheniya zadachi uvoda ob"ektov kosmicheskogo musora na orbitu zahoroneniya. Chast' 1 [Mathematical modeling and comparative analysis of the use of the towing vehicle to solve the problem of moving space debris into orbit. Part 1] // Trudy MAI, 2019, no. 106. Avialable at: (accessed 20.04.2020). (In Russian)

[7] Forward R. L., Hoyt R. P. Terminator TetherTM: A Spacecraft Deorbit Device // Journal of spacecraft and rockets, 2000, vol. 37, no. 2, pp. 187–196.

[8] Janovsky R., Kassebom M., Lubberstedt H., RombergO., Burkhardt H., Sippel M., Krulle G., Fritsche B. End-of-life de-orbiting strategies for satellites // Deutscher Luft- und Raumfahrt congress, 2002.

[9] Agasid E., Burton R., Carlino R., Defouw G., Perez A. D., Karacalioglu A. G., Klamm B., Rademacher A., Schalkwyck J., Shimmin R., Tilles J., Weston S. Small Spacecraft Technology State of the Art // NASA Ames Research Center, Mission Design Division, 2015, pp. 41–59.

[10] Palij A. S. Ob effektivnosti ustrojstva aerodinamicheskogo tormozheniya dlya uvoda kosmicheskih apparatov [On the effectiveness of aerodynamic braking devices for the removal of spacecraft] // Tekhnicheskaya mekhanika, 2012, no. 4, pp. 82–90. (In Russian)

[11] Trofimov S. P. Uvod malyh kosmicheskih apparatov s nizkih okolozemnyh orbit [Small spacecraft withdrawal from low Earth orbits] : PhD thesis. Moscow, 2015. 125 p. (In Russian)

[12] Ryzhkov V. V., Sulinov A. V. Dvigatel'nye ustanovki i raketnye dvigateli maloj tyagi na razlichnyh fizicheskih principah dlya sistem upravleniya malyh i sverhmalyh kosmicheskih apparatov [Propulsion systems and small thrust rocket engines on various physical principles for control systems of small and ultra-small spacecraft] // Vestnik of Samara University. Aerospace and Mechanical Engineering, 2018, vol. 17, no. 4, pp. 115–128. (In Russian)

[13] Tkachenko I. S., Krestina A. V., Korovin M. D. Analysis of the possibility of using the system for small satellite deorbiting based on an aerodynamic stabilizer, taking into account the physical features of the Earth’s upper atmosphere // Journal of Physics: Conference Series, 2019, vol. 1236, issue 1. doi: 10.1088/1742-6596/1236/1/012087

[14] Krestina A. V., Tkachenko I. S. Metodika vybora proektnyh parametrov sistemy uvoda malyh kosmicheskih apparatov s orbity [A method of determining design parameters for a small satellite de-orbiting system] // XLIV Academic space conference: abstracts, 2020, vol. 1, pp. 107–111. (In Russian)

[15] Barvinok V. A., Bogdanovich V. I., Dement'ev S. G. Sovremennye tekhnologii v avia- i raketostroenii [Modern technologies in aircraft and rocket science]. Moscow, Mashinostroyeniye, 2014. 320 p. (In Russian)

[16] Salmin V. V., Kucherov A. S., Starinova O. L. Prohorov A. G. Metody sistemnogo analiza i issledovaniya operacij v zadachah proektirovaniya letatel'nyh apparatov [Methods of system analysis and operations research in aircraft design problems]. Samara, SGAU, 2007. 272 p. (In Russian)

[17] Tkachenko I. S., Kaurov I. V. Integral'naya ocenka effektivnosti kosmicheskoj sistemy orbital'noj inspekcii na baze malyh kosmicheskih apparatov [Integral evaluation of the effectiveness of the space orbital inspection system on the basis of small spacecraft] // Vestnik of the Samara State Aerospace University, 2013, no. 1 (39), pp. 91–100. (In Russian)

[18] Blinov V. N., Ivanov N. N., Sechenov Yu. N., Shalaj V. V. Malye kosmicheskie apparaty. Book 3. Minisputniki. Unificirovannye kosmicheskie platformy dlya malyh kosmicheskih apparatov [Small spacecraft. Book 3. Minisatellites. Unified space platforms for small spacecraft]. Omsk, Izd-vo OmGTU, 2010. 348 p. (In Russian)

[19] Tkachenko I. S., Salmin V. V. Analiz effektivnosti kosmicheskih apparatov-inspektorov s elektroreaktivnymi energodvigatel'nymi modulyami [The analysis of efficiency of satellte inspectors with electrojet impellent modules] // Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2011, vol. 13, no. 6, pp. 106–115.

[20] EDB Fakel. Stationary plasma thrusters. Avialable at: (accessed 11.02.2019).

[21] Research, development and production of rocket engines, propulsion systems and their units for orbital and interplanetary spacecraft, including low-thrust rocket engines for manned flights: catalog of JSC «TsNIIMash». Avialable at: (accessed 25.05.2020).

[22] Liquid-propellant thrusters low-thrust SDO «Yuzhnoye». Avialable at: (accessed 15.02.2019).

[23] Industrial Solid Propulsion: Product Portfolio. Avialable at: (accessed 25.04.2017).

[24] Klinkrad H. Space Debris. Models and Risk Analysis. UK, Chichester : Springer, 2006. 430 p.

[25] Palij A. S. Metody i sredstva uvoda kosmicheskih apparatov s rabochih orbit (sostoyanie problemy) [Methods and means of removing spacecraft from working orbits (state of the problem)] // Tekhnicheskaya mekhanika, 2012, no. 4, pp. 94–102. (In Russian)

[26] Slavinskis A., Ehrpais H., Kuuste H., Sunter I., Viru J., Kutt J., Kulu, E., Noorma M. Flight Results of ESTCube-1 Attitude Determination System // Journal of Aerospace Engineering, vol. 29, issue 1. doi: 10.1061/(ASCE) AS.1943-5525.0000504

For citing this article

Anshakov G.P., Krestina A.V., Tkachenko I.S. Analysis of the effectiveness of the de-orbiting devices for small satellite // Spacecrafts & Technologies, 2020, vol. 4, no. 2, pp. 72-84. doi: 10.26732/

Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).