№2 2020


Vector network analyzer usage at calibration of delay in satellite radio navigation system signal simulators


N.M. Krat


JSC «Academician M. F. Reshetnev» Information Satellite Systems»
Zheleznogorsk, Krasnoyarsk region, Russian Federation


This article presents a method of vector network analyzer application at the task of global navigation system simulator calibration. Calibrated parameter is internal delay of the radiofrequency signal in simulator. Attention is payed to reducing of calibration uncertainty by means of taking into account the part, which is caused by impedance of simulator and other equipment mismatches. The goal of research is to estimate the non-excluded uncertainty after vector network analyzer measurements’ usage for correction calculation. Measured parameters are the group delay, reflection and transmission coefficients of cable with connectors, and reflection coefficients of simulator and oscilloscope. The goal has been achieved by means of simulation modelling. The main parts of modelling were simulation of vector network analyzer measurements’ and calculation the statistics of the non-excluded uncertainty. As the result, was shown, that if to use vector network analyzer for global navigation system simulator calibration, the part of uncertainty, caused by impedance mismatch, can be reduced in a several times.


GNSS signal simulator, systematic error, calibration, impedance mismatch, vector network analyzer


[1] Marareskul D. I., Aleshechkin. A. M. Sistema metrologicheskogo obespecheniya kosmicheskogo kompleksa GLONASS [The system of metrological support of the GLONASS space complex] // Modern problems of radio electronics, Krasnoyarsk, 2012, pp. 170–175. (In Russian)

[2] Krat N. M., Savin A. A., Sharygin G. S. Kontrol’no-proverochnaya apparatura systemy avtonomnoi navigatsii kosmicheskih apparatov [Test equipment for autonomous navigation system of space vehicles] // Doklady TUSUR, 2014, no. 1 (31), pp. 28–32. (In Russian)

[3] Pecherica D. S. Metod kalibrovki navigacionnoj apparatury potrebitelej GLONASS s ispol'zovaniem etalonov, proslezhivaemyh k gosudarstvennym pervichnym etalonam edinic velichin [Method for calibrating GLONASS consumer navigation equipment using standards traceable to state primary unit standards] : Phd thesis. Moscow, FSUE «VNIIFTRI», 2018, 123 p. (In Russian)

[4] Krat N. M., Savin A. A. Vliyanie rassoglasovaniya impedansov v trakte peredachi signala pri kalibrovke zaderzhek imitatorov navigacionnyh signalov [The effect of mismatch of impedances in the signal transmission path during calibration of delays of navigation signal simulators] // Siberian Journal of Science and Technology, 2017, vol. 18, no 3, pp. 520–524. (In Russian)

[5] Grebennikov A. V., Kondrat'ev A. S., Sizasov S. V., Hazagarov Yu. G. Apparatura dlya kalibrovki i metrologicheskoj poverki istochnikov navigacionnyh signalov global'nyh navigacionnyh sputnikovyh sistem [Equipment for calibration and metrological verification of the sources of navigation signals of global navigation satellite systems] // Navigation satellite systems, their role and significance in the life of a modern man : abstracts of 2nd International Scientific and Technical Conference, 2012, pp. 239–241. (In Russian)

[6] Skakun I. O. Vsemirnoe koordinirovannoe vremya i metody slicheniya shkal vremeni [Coordinated universal time and methods for comparing time scales] // Cosmonautics and Rocket Engineering, 2012, no. 4 (69), pp. 60–69. (In Russian)

[7] Teunissen P. J. G., Montenbruck O. Springer handbook of global navigation satellite systems. Springer International Publishing AG, 2017. 1335 p.

[8] Analizatory cepej vektornye S1205, C1207, C1209, C1214, S1220, S1409, S1420, S2209, S2409, S2220, C2420, S4209, S4409, S4220, S4420. Rukovodstvo po ekspluatacii. Tekhnicheskie harakteristiki [Vector network analyzers C1205, C1207, C1209, C1214, C1220, C1409, C1420, C2209, C2409, C2220, C2420, C4209, C4409, C4220, C4420. Manual. Specifications]. Chelyabinsk, Planar LLC, 2017. (In Russian)

[9] Kharisov V. N., Perov A. I., Boldin V. A. GLONASS. Printsipy postroeniya i funktsionirovaniya [GLONASS. Construction principles and operation]. Moscow, Radiotekhnika Publ., 2010, 800 p. (In Russian)

[10] Krat N. M., Ermolaev M. V., Marareskul D. I. Kontrol' tochnostnyh harakteristik bezzaprosnyh izmeritel'nyh stancij iz sostava nazemnogo segmenta kosmicheskogo kompleksa sistemy GLONASS [Monitoring the accuracy characteristics of non-request measuring stations from the ground segment of the space complex of the GLONASS system] // Communication and radio navigation systems : collection of abstracts / scientific edition V. F. Shabanov; responsible for issue G. P. Lopardina. Krasnoyarsk, JSC NPP Radio Communication, 2018, pp. 119–122. (in Russian)

[11] Lestarquit L., Gregoire Y., Thevenon P. Characterising the GNSS correlation function using a high gain antenna and long coherent integration – Application to signal quality monitoring // Position Location and Navigation Symposium (PLANS) 2012 IEEE/ION, 2012, pp. 877–885.

[12] Harisov V. N., Pel'tin A. V. Algoritm vremennogo nakopleniya dlya monitoringa signalov GLONASS [The temporary accumulation algorithm for monitoring of the GLONASS signals] // Radioengineering, 2014, no. 9, pp. 119–124. (In Russian)

[13] Harisov V. N., Pel'tin A. V, Valuev E. V. Metod vremennogo nakopleniya – osnova monitoringa signalov GNSS [The temporary accumulation method – basis of GNSS signals monitoring technology] // Radioengineering, 2017, no. 11, pp. 46–54. (In Russian)

For citing this article

Krat N.M. Vector network analyzer usage at calibration of delay in satellite radio navigation system signal simulators // Spacecrafts & Technologies, 2020, vol. 4, no. 2, pp. 116-122. doi: 10.26732/

Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).