Article


Cover

№3 2020

Title

Problems of irradiance characteristics measurement of solar simulators for ground spacecraft tests

Authors

1,3A.A. Shevchuk, 1O.V. Pastushenko, 1,2V.V. Dvirniy, 3G.V. Dvirniy, 4A.A. Filatov

Organizations

1JSC «Academician M. F. Reshetnev» Information Satellite Systems»
Zheleznogorsk, Krasnoyarsk region, Russian Federation
2Siberian Federal University
Krasnoyarsk, Russian Federation
3Reshetnev Siberian State University of Science and Technology
Krasnoyarsk, Russian Federation
4LLC NPO Heliosfera
Saint Petersburg, Russian Federation

Abstract

The reliability of both spacecraft as a whole and of their systems is confirmed at the stage of complex ground-based experimental tests, including complex thermal vacuum tests. The thermal state of the test object in thermal vacuum chambers is obtaining, in particular, using a solar simulator. Radiometers based on silicon photoelectric converters are most often used to control the irradiance of a solar simulator under conditions of thermal vacuum tests. At the same time, an analysis of the features of silicon photoelectric converters shows that their direct measurement with the accuracy required for ground-based tests of spacecraft is impossible; their output is nonlinear, depends on the received spectrum, their own temperature and has long-term instability. The achieved measurement accuracy directly depends on the number and accuracy of the tools used and the methods of the necessary correction, of which the mismatch correction between the solar simulator spectrum and the solar spectrum is the most difficult and laborious. At the same time, spectrally nonselective heat flux radiometers are free from the above disadvantages. In the course of the experiment we carried out, the significant dependence of the accuracy of measuring the irradiance with radiometers based on silicon photoelectric converters on the received spectrum was confirmed. The conclusion is made that direct measurement by heat flux radiometers of the irradiance of the solar simulator is most justified under the conditions of thermal vacuum tests.

Keywords

thermal vacuum tests, solar simulator, irradiance, spectral mismatch, photoelectric converter, heat flux radiometer

References

[1] GOST R 56469–2015. Apparaty kosmicheskiye avtomaticheskiye. Termobalansnyye i termovakuumnyye ispytaniya [State Standard R 56469-2015. Automatic spacecrafts. Thermal balance and thermal vacuum tests]. Moscow, Standartinform Publ., 2015. 11 p. (In Russian)

[2] Kravchenko S. V., Nesterov S. B., Roman’ko V. A., Testoyedov N. A., Khalimanovich V. I., Khristich V. V. Podhody k sozdaniyu kompleksnyh sistem dlya otrabotki i ispytaniya kosmicheskih apparatov [Approaches to creating integrated systems for optimization and testing of spacecraft] // Engineering Journal: Science and Innovation, 2013, no. 1 (13), pp. 149–175. (In Russian)

[3] Aslanyan R. O., Anisimov D. I., Marchenko I. A., Panteleev V. I. Imitatory solnechnogo izlucheniya dlya termovakuumnyh ispytanij kosmicheskogo apparata [Solar simulators for thermal vacuum tests of spacecraft]. Siberian Journal of Science and Technology, 2017, vol. 18, no. 2, pp. 323–327 (In Russian).

[4] GOST R MEK 60904–1–2013. Pribory fotoelektricheskie. Chast’ 1. Izmereniya vol’tampernykh kharakteristik [State Standard R IEC 60904–1–2013. Photovoltaic devices. Part 1. Measurement of photovoltaic current-voltage characteristics]. Moscow, Standartinform Publ., 2014. 12 p. (In Russian)

[5] GOST R MEK 60904–2–2013. Pribory fotoelektricheskie. Chast’ 2. Trebovaniya k etalonnym solnechnym priboram [State Standard R IEC 60904–2–2013. Photovoltaic devices. Part 2. Requirements for reference solar devices]. Moscow, Standartinform Publ., 2014. 10 p. (In Russian)

[6] GOST R MEK 60904–7–2013. Pribory fotoelektricheskie. Chast’ 7. Vychisleniye popravki na spektral’noye nesootvetstviye pri ispytaniyakh fotoelektricheskikh priborov [State Standard R IEC 60904–7–2013. Photovoltaic devices. Part 7. Computation of the spectral mismatch correction for measurements of photovoltaic devices]. Moscow, Standartinform Publ., 2014. 8 p. (In Russian)

[7] GOST R MEK 60904–8–2013. Pribory fotoelektricheskie. Chast’ 8. Izmereniye spektral’noy chuvstvitel’nosti fotoelektricheskikh priborov [State Standard R IEC 60904–8–2013. Photovoltaic devices. Part 8. Measurement of spectral response of a photovoltaic devices]. Moscow, Standartinform Publ., 2014. 8 p. (In Russian)

[8] GOST R MEK 60904–9–2016. Pribory fotoelektricheskie. Chast’ 9. Trebovaniya k harakteristikam imitatorov solnechnogo izlucheniya [State Standard R IEC 60904–9–2016. Photovoltaic devices. Part 9. Solar simulator performance requirements]. Moscow, Standartinform Publ., 2017. 12 p. (In Russian)

[9] GOST R MEK 60904–10–2013. Pribory fotoelektricheskie. Chast’ 10. Metody opredeleniya lineynosti kharakteristik [State Standard R IEC 60904–10–2016. Photovoltaic devices. Part 10. Methods of linearity measurement]. Moscow, Standartinform Publ., 2017. 12 p. (In Russian)

[10] GOST R 55702–2013. Istochniki sveta elektricheskiye. Metody izmereniya elektricheskikh i svetovykh parametrov [State Standard R 55702-2013. Electric light sources. Methods of measuring of electrical and luminious characteristics]. Moscow, Standartinform Publ., 2017. 44 p. (In Russian)

[11] GOST R 8.587–2001. Sredstva izmereniy kharakteristik opticheskogo izlucheniya solnechnykh imitatorov. Metodika poverki [State Standard R 8.587-2001. Instruments measuring the characteristics of optical radiation of solar simulators. Methods of verification]. Moscow, Gosstandart Publ., 2002. 16 p. (In Russian)

[12] Krat S. A. Sobstvennaya temperaturnaya zavisimost' kremnievyh fotopreobrazovatelej luchistogo potoka pri teplovakuumnyh ispytaniyah kosmicheskih apparatov [Inherent silicon photoelectric converter temperature dependence under space vehicle thermal vacuum tests] // Reshetnevskie chteniya : materialy XX Mezhdunar. nauch.-prakt. konf. [Reshetnev readings : materials of the XX International scientific-practical conference]. Krasnoyarsk, 2015, vol. 1, pp. 375–376. (In Russian)

[13] Schubert F., Spinner D. Solar simulator spectrum and measurement uncertainties // Energy Procedia, 2016, no. 92, pp. 205–210.

[14] Mullejans H., Salis E. Linearity of photovoltaic devices: quantitative assessment with N-lamp method // Measurement Science and Technology, 2019, no. 30, 065008 (9 pp). doi: 10.1088/1361-6501/ab1231

[15] Metzdorf J., Winter S., Wittchen T. Radiometry in photovoltaics: calibration of reference solar cells and evaluation of reference values // Metrologia, 2000, no. 37, pp. 573–578.

[16] Fidanyan G. S., Morozova S. P., Parfent’yev N. A., Katysheva A. A., Lisyanskiy B. E., Sapritskiy V. I. Ustanovka dlya izmereniya absolyutnoj spektral'noj chuvstvitel'nosti solnechnyh elementov v standartnyh usloviyah [Apparatus for measuring the absolute spectral sensitivity of solar cells under standard conditions] // Trudy XXIV Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii po fotoelektronike i priboram nochnogo videniya, 2016, pp. 258–262. (In Russian)

[17] Osterwald C. R., Campanelli M., Moriarty T., Emery K. A., Williams R. Temperature-dependent spectral mismatch corrections // IEEE Journal of Photovoltaics, 2015, vol. 5, no. 6, pp. 1692–1697.

[18] Strebkov D. S., Nikitin B. A., Kharchenko V. V., Gusarov V. A., Tikhonov P. V. Vliyanie temperatury v shirokom intervale znachenij na parametry solnechnyh elementov [Influence of temperature in a wide range of values on the parameters of solar cells]. Elektro. Elektrotekhnika, elektroenergetika, elektrotekhnicheskaya promyshlennost’, 2013, no. 4, pp. 46–48. (In Russian)

[19] Krat S. A., Krat N. M., Sharov A. K. Sposob korrekcii sobstvennoj temperaturnoj zavisimosti kremnievyh fotoelektricheskih preobrazovatelej [Method for correction of intrinsic temperature dependence of silicon photoelectric converters]. Patent RU 2585613, 2016, bulletin no. 15.

[20] Akcionernoe obshchestvo «Ob"edinennaya raketno-kosmicheskaya korporaciya». Spisok produkcii. Datchik summarnogo teplovogo potoka FOA 020 [Joint Stock Company "United Rocket and Space Corporation". List of products. Total heat flow sensor FOA 020]. Available at: https://www.rosorkk.ru/catalog/preobrazovateli-sistemyizmereniya-kontrolya-i-diagnostiki/228/ (accessed 21.08.2020). (In Russian)

[21] Krat S. A. Teplopriemnik FOA 020 kak al'ternativnoe sredstvo kontrolya osveshchennosti pri teplovakuumnyh ispytaniyah kosmicheskih apparatov [FOA 020 heat receiver as sunlight control alternative under space vehicles’ thermal vacuum tests] // Reshetnevskie chteniya : materialy XIX Mezhdunar. nauch.-prakt. konf. [Reshetnev readings : materials of the XX International scientific-practical conference]. Krasnoyarsk, 2017, vol. 1, pp. 340–342. (In Russian)



For citing this article

Shevchuk A.A., Pastushenko O.V., Dvirniy V.V., Dvirniy G.V., Filatov A.A. Problems of irradiance characteristics measurement of solar simulators for ground spacecraft tests // Spacecrafts & Technologies, 2020, vol. 4, no. 3, pp. 129-140. doi: 10.26732/j.st.2020.3.01


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).