Article


Cover

№3 2020

Title

Design and ballistic analysis of the mission for long-term study of the asteroid Apophis by a nanosatellite with an electric rocket propulsion system

Authors

O.L. Starinova, E.A. Sergaeva, A.Yu. Shornikov

Organization

Samara National Research University
Samara, Russian Federation

Abstract

The paper considers non-spherical objects with low gravitational attraction, such as asteroids, satellites of the planet and comets. We considered possibility of a mission to small bodies of the solar system of irregular shape on the example of the asteroid Apophis. The authors of the article suggest using a nanoclass spacecraft with an electric rocket propulsion system for a long mission to study Apophis. The purpose of this work is to determine the necessary costs of the working body for all stages of the mission, which includes reaching the asteroid, forming and maintaining a given orbit relative to it. The gravity of the Earth, Sun, and asteroid is taken into account when modeling the controlled movement of the spacecraft. When a spacecraft is moving relative to an asteroid, its gravitational field is described as a superposition of the gravitational fields of two rotating massive points. In this paper, it is proposed to divide the mission into two sections for preliminary ballistic design. The first optimal speed heliocentric flight Earth-asteroid Apophis with the alignment of the speed of the spacecraft and the asteroid. The second is the movement in the vicinity of the asteroid, which includes the optimal speed maneuver for forming the working orbit and maintaining the working orbit for a given time.

Keywords

nanosatellite, asteroid, mathematical model, motion control, trajectory, design and ballistic characteristics

References

[1] Eneev T. M., Akhmetshin R. Z., Efimov G. B. K voprosu ob asteroidnoj opasnosti [On the issue of asteroid hazard] // Preprints of the Institute of applied mathematics M. V. Keldysh RAS, 2011, no. 35, pp. 35–40. (In Russian)

[2] Medvedev Yu. D., Sveshnikov M. L., Sokolsky G. A., Timoshkova E. I., Chernatenko Yu. A., Shor V. A. Asterodnokometnaya opasnost' [Asteroid-comet hazard]. Saint-Petersburg, ITA RAS, 1996. P. 244. (In Russian)

[3] Sokolov L. L., Bashakov A. A., Pitiev N. P. Osobennosti dvizheniya asteroida 99942 Apofis [Features of the asteroid 99942 Apophis movement] // Astronomical Bulletin, 2008, vol. 42, no. 1, pp. 20–29. (In Russian)

[4] Yeomans D. K., Chodas P. W., Keesey M. S., Ostro S. J., Chandler J. F., Shapiro I. I. Asteroid and comet orbits using radar data // Astronomical Journal, 1992, vol. 103, pp. 303–317.

[5] Shustov B. M., Naroenkov S. A., Emelianenko V. V., Shugarov A. S. Astronomicheskie aspekty postroeniya sistemy obnaruzheniya i monitoringa opasnyh kosmicheskih ob"ektov [Astronomical aspects of building a system for detecting and monitoring dangerous space objects] // Astronomical Bulletin. Exploration of the solar system, 2013, vol. 47, no. 4, pp. 312–320. (In Russian)

[6] Geisslera P., Petit J.-M., Durdaa D. D., Greenberga R., Bottkea W., Nolana M., Moore J. Erosion and ejecta reaccretion on 243 Ida and its moon // Icarus, 1996, vol. 120, issue 1, pp. 140–157.

[7] Scheeres D. J. Orbital mechanics about small bodies // Acta Astronautica, 2012, vol. 72, pp. 1–14.

[8] Khartov V. V. Novyj etap sozdaniya avtomaticheskih kosmicheskih apparatov dlya fundamental'nyh nauchnyh issledovanij [New stage of creation of automatic space vehicles for fundamental scientific research] // Vestnik NPO im. S. A. Lavochkina, 2011, no. 3, pp. 3–10. (In Russian)

[9] Kulkov V. M., Egorov Yu. G., Krainov A. M., Shakhanov A. E., Elnikov R. V. K voprosu proektirovaniya malyh kosmicheskih apparatov s elektroraketnoj dvigatel'noj ustanovkoj dlya issledovaniya malyh tel Solnechnoj sistemy [On the issue of designing small spacecraft with an electric rocket propulsion system for the study of small bodies of the Solar system] // Vestnik NPO im. S. A. Lavochkina, 2015, no. 1, pp. 48–54. (In Russian)

[10] Kulkov V. M., Egorov Yu. G., Krainov A. M., Shakhanov A. E., Elnikov R. V. K voprosu proektirovaniya malyh kosmicheskih apparatov s marshevoj elektroraketnoj dvigatel'noj ustanovkoj dlya issledovaniya okololunnogo prostranstva [On the issue of designing small spacecraft with a marching electric rocket propulsion system for exploring the circumlunar space] // Vestnik NPO im. S. A. Lavochkina, 2013, no. 4, pp. 68–74. (In Russian)

[11] Lomakin I. V., Martynov M. B., Pol V. G., Simonov A. V. K voprosu realizacii programmy issledovaniya malyh tel Solnechnoj sistemy [On the implementation of the program for the study of small bodies of the Solar System] // Vestnik NPO im. S. A. Lavochkina, 2013, no. 4, pp. 10–17. (In Russian)

[12] Ivashkin V. V., Lan A. Analiz optimal'nosti traektorij ekspedicii Zemlya–asteroid–Zemlya [Analysis of optimality trajectories of the Earth–asteroid–Earth expedition] // Preprints of the Institute of applied mathematics M. V. Keldysh RAS, 2017, no. 113, pp. 113–125. doi:10.20948/prepr-2017-113. (In Russian)

[13] Polishchuk G. M., Pichkhadze K. M. Avtomaticheskie kosmicheskie apparaty dlya fundamental'nyh i prikladnyh nauchnyh issledovanij [Automatic spacecraft for fundamental and applied scientific research]. Moscow, MAIPRINT, 2010. (In Russian)

[14] Kulkov V. M. Issledovanie proektnyh parametrov i analiz effektivnosti primeneniya unificirovannyh platform s elektroraketnymi dvigatelyami v sostave malyh kosmicheskih apparatov [Research of effectiveness design parameters and analysis of unified platforms with electric rocket engines in small spacecraft] // Aerospace MAI Journal, 2012, vol. 19, no. 2, pp. 18–28. (In Russian)

[15] Martynov M. B., Petukhov V. G. Koncepciya primeneniya elektroraketnoj dvigatel'noj ustanovki v nauchnyh kosmicheskih proektah: preimushchestva i osobennosti, primery realizacii [Concept of using an electric rocket propulsion system in scientific space projects: advantages and features, examples of implementation] // Vestnik NPO im. S. A. Lavochkina, 2011, no. 2, pp. 3–11. (In Russian)

[16] Vlasenkov E. V., Kombaev T. Sh., Krainov A. M., Chernikov P. S., Shakhanov A. E. Proektnyj oblik perspektivnogo malogo kosmicheskogo apparata s marshevoj elektroraketnoj dvigatel'noj ustanovkoj [Design appearance of a promising small spacecraft with an electric propulsion system] // Aerospace MAI Journal, 2012, no. 11, P. 33. (In Russian)

[17] Akhmetzhanov R. V., Bogaty A. V., Dyakonov G. A., Popov G. A. Primenenie elektroraketnoj dvigatel'noj ustanovki na baze vysokochastotnogo ionnogo dvigatelya moshchnost'yu do 600 Vt dlya mezhplanetnyh kosmicheskih apparatov [Application of an electric rocket propulsion system based on a high frequency ion engine with a power of up to 600 W for interplanetary spacecraft] // Izvestia of the Russian Academy of Sciences. Energy, 2019, no. 3, pp. 14–25. (In Russian)

[18] Konstantinov M. S., Orlov A. A. Analiz vliyaniya harakteristik energeticheskoj ustanovki pri ispol'zovanii ERDU v proekte issledovaniya Merkuriya [Analysis of the influence of power plant characteristics when using electric rocket engines in the mercury research project] // Izvestia of the Russian Academy of Sciences. Energy, 2018, no. 3, pp. 106–118. (In Russian)

[19] Woolley R., Olikara Z. Optimized Low-Thrust Missions from GTO to Mars // 2019 IEEE Aerospace Conference, 2019, pp. 1–10.

[20] He S., Zhu Zh. Optimal design of near-Earth asteroid sample-return trajectories in the Sun–Earth–Moon system // Acta Mechanica Sinica, 2016, vol. 32, no. 4, pp. 753–770. doi: 10.1007/s10409-015-0527-1.

[21] Kulumani S., Lee T. Systematic Design of Optimal Low-Thrust Transfers for the Three-Body Problem // The Journal of the Astronautical Sciences, 2019, vol. 66, no. 1, pp. 1–31.

[22] Petukhov V. G., Konstantinov M. S., Wook W. S. Simultaneous optimization of the low-thrust trajectory and the main design parameters of the spacecraft // Advances in the Astronautical Sciences, 2017, pp. 639–653.

[23] Willis M., D'Amico S. Analytical approach to spacecraft formation-flying with low-thrust relative spiral trajectories // Acta Astronautica, 2018, vol. 153, pp. 175–190. doi: 10.1016/j.actaastro.2018.02.002.

[24] Petukhov V. G., Ivanyukhin A.V., Vuk V. S. Sovmestnaya optimizaciya upravleniya i osnovnyh traektornyh i proektnyh parametrov mezhplanetnogo kosmicheskogo apparata s elektroraketnoj dvigatel'noj ustanovkoj [Joint optimization of control and main trajectory and design parameters of an interplanetary spacecraft with an electric rocket propulsion system] // Space research, 2019, vol. 57, no. 3, pp. 212–228. (In Russian)

[25] Petukhov V. G., Popov G. A. Avtomatizaciya zadach vychisleniya optimal'nyh traektorij kosmicheskih apparatov s elektroraketnymi dvigatel'nymi ustanovkami [Automation of tasks for calculating optimal trajectories of spacecraft with electric rocket propulsion systems] // Proceedings «System analysis, management and navigation», 2018, pp. 109–111. (In Russian)

[26] Ivashkin V. V., Guo P. Analiz vozmozhnosti sozdaniya stabil'nogo sputnika asteroida Apofis kak odnorodnogo trekhosnogo ellipsoida [Analysis of the possibility of creating a stable satellite of the asteroid Apophis as a homogeneous three-axis ellipsoid] // Reports of the Academy of Sciences, 2019, vol. 489, no. 1, pp. 27–33. (In Russian)

[27] Shornikov A. Yu., Starinova O. L. Modelirovanie gravitacionnogo polya slozhnoj konfiguracii [Modeling of the gravitational field of complex configuration] // Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2015, vol. 17, no. 2–1, pp. 167–170. (In Russian)

[28] Starinova O., Shornikov A., Nikolaeva E. Using the iESP Installed on the Space Station Moving in an Irregular Gravitational Field of the Asteroids Eros and Gaspra // Electrospinning and Electrospraying-Techniques and Applications, 2019. doi: 10.5772/intechopen.85615.

[29] Ren Y., Shan J. On tethered sample and mooring systems near irregular asteroids // Advances in Space Research, 2014, vol. 54, no. 8, pp. 1608–1618.

[30] Hu X., Jekeli C. A numerical comparison of spherical, spheroidal and ellipsoidal harmonic gravitational field models for small non-spherical bodies: examples for the Martian moons // Journal of Geodesy, 2015, vol. 89, no. 2, pp. 159–177.

[31] Ivashkin V. V., Lan A. Analiz orbital'nogo dvizheniya sputnika asteroida Apofis [Analysis of the orbital motion of the Apophis asteroid satellite] // Space research, 2017, vol. 55, no. 4, pp. 268–277. (In Russian)

[32] Wang X., Jiang Y., Gong S. Analysis of the potential field and equilibrium points of irregular-shaped minor celestial bodies // Astrophysics and Space Science, 2014, vol. 353, no. 1, pp. 105–121.

[33] Grebow D. J., Bradley N., Kennedy B. Stability and Targeting in Dawn’s Final Orbit // Proceedings of the 29th AAS/AIAA Space Flight Mechanics Meeting, 2019, pp. 13–17.

[34] Grebow D. J., Kennedy B. M., Han D., Whiffen G. J. Design and execution of Dawn HAMO to LAMO transfer at Ceres // AIAA/AAS Astrodynamics Specialist Conference, 2016.

[35] Kennedy B., Abrahamson M., Ardito A., Han D., Haw R., Mastrodemos N., Nandi S., Park R., Rush B., Vaughan A. Dawn Orbit Determination Team: Trajectory and Gravity Prediction Performance during Vesta Science Phases, 2013.

[36] Vorontsov V.A., Lokhmatova M.G., Martynov M.B., Pichkhadze K.M., Simonov A.V., Khartov V.V., Zasova L.V., Zeleny L.M., Korablev O . I. Perspektivnyj kosmicheskij apparat dlya issledovaniya Venery. Proekt «Venera-D» [A promising spacecraft for exploring Venus. The Project «Venera-D»] // Vestnik NPO im. S. A. Lavochkina, 2010, no. 4, pp. 62–67. (In Russian)

[37] Nikolaeva E. A., Starinova O. L., Shornikov A. U., Kiunov Y. S., Chernyakina I. V. Ballistic and Design of Nano-Class Spacecraft for Asteroid Exploration // 9th International Conference on Recent Advances in Space Technologies (RAST), 2019, pp. 89–94.

[38] Akhmetzhanov R. V., Bogaty A. V., Dyakonov G. A., Kim V. P., Merkuriev D. V., Lyubinskaya N. V., Semenikhin S. A., Spivak O. O., Popov G. A. Elektricheskie raketnye dvigateli novogo pokoleniya dlya malyh kosmicheskih apparatov [New generation electric rocket engines for small spacecraft] // Izvestia of the Russian Academy of Sciences. Energy, 2019, no. 3, pp. 3–13. (In Russian)

[39] Ivashkin V. V., Lan A. Analiz dinamiki orbital'nogo dvizheniya kosmicheskogo apparata vokrug asteroida Apofis [Analysis of the dynamics of the orbital motion of the spacecraft around the asteroid Apophis] // Actual problems of Russian cosmonautics: Proceedings of the XXXIX Academic Readings on Cosmonautics dedicated to the memory of Academician S. P. Korolev and other prominent Russian scientists-pioneers of space exploration, 2015, pp. 90–91. (In Russian)

[40] Lan A. Analiz kosmicheskih traektorij dlya ekspedicii Zemlya-Apofis-Zemlya i dvizheniya kosmicheskogo apparata vokrug asteroida Apofis [Analysis of space trajectories for the Earth-Apophis-Earth expedition and the movement of the spacecraft around the Apophis asteroid] // Engineering Journal: Science and Innovation, 2017, no. 7 (67). (In Russian)

[41] Konstantinov M. S., Petukhov V. G., Tein M. Analiz vliyaniya moshchnosti solnechnoj energeticheskoj ustanovki na harakteristiki proekta «Intergelio-zond» pri ispol'zovanii elektroraketnyh dvigatelej [Analysis of the influence of solar power plant capacity on the characteristics of the project «Intergelio-probe» when using electric rocket engines] // Izvestia of the Russian Academy of Sciences. Energy, 2016, no. 2, pp. 102–117. (In Russian)

[42] Starinova O. L. Nikolaeva E. A. Modelirovanie funkcionirovaniya sistem zashchity Zemli dlya preodoleniya asteroidnoj opasnosti [Modeling of Earth protection systems functioning for overcoming asteroid hazard] // The Certificate on Official Registration of the Computer Program, no. 2018611032, 2018.

[43] Shornikov A. Yu. Optimal'noe upravlenie dvizheniem kosmicheskogo apparata v pole prityazheniya asteroida Eros 433 [Optimal control of the spacecraft movement in the field of attraction of the asteroid Eros 433] // VESTNIK of Samara University. Aerospace and Mechanical Engineerin, 2019, vol. 18, no. 4, pp. 146–156. (In Russian)

[44] Shornikov A. Yu. Starinova O. L. Programmnyj kompleks modelirovaniya i optimizaciya pereleta kosmicheskogo apparata s elektroreaktivnym dvigatelem maloj tyagi v zadachah manevrirovaniya v okrestnosti tel so slozhnymi gravitacionnymi polyami [Software package for modeling and optimizing the flight of a spacecraft with a low-thrust electric jet engine in the problems of maneuvering in the vicinity of bodies with complex gravitational fields] // The Certificate on Official Registration of the Computer Program, no. 2014618472, 2014.



For citing this article

Starinova O.L., Sergaeva E.A., Shornikov A.Yu. Design and ballistic analysis of the mission for long-term study of the asteroid Apophis by a nanosatellite with an electric rocket propulsion system // Spacecrafts & Technologies, 2020, vol. 4, no. 3, pp. 161-170. doi: 10.26732/j.st.2020.3.04


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).