Article


Cover

№4 2020

Title

Strength analysis of structural elements and metal-composite joints of a flying vehicle

Authors

V.I. Grishin, M.A. Glebova, Yu.I. Dudarkov, E.A. Levchenko, M.V. Limonin

Organization

The Central Aerohydrodynamic Institute named after N. E. Zhukovsky
Zhukovsky, Moscow region, Russian Federation

Abstract

The strength and load-bearing capacity analyses results for flying vehicle typical structural elements and joints are presented in the paper. Calculations were made with the use of nonlinear finite element method, implemented in software NASTRAN and ABAQUS. Structural composite panels and metal-composite joints in attachment points of moving components under consideration for research. Employed computational models and procedures, obtained results analysis process are presented. Numerical strength estimations of structural panels and joint strength confirmed with test results. On the example of a virtual test simulation of composite panels’ strength test in a shear frame, the effect of experimental conditions on obtaining results is evaluated. It is shown that boundary conditions realized in such tests cannot always give correct values of panels’ global buckling critical stress. The computation results of buckling and strength of metal-composite joints in attachment points of moving components are presented. The computation performed on a detailed model with employing solid elements and taking into account contact interaction between joint parts, geometrical and physical nonlinearities. Composite strength in bolted joints is made based on Nuismer criterion. The formed recommendations for improvement made it possible to avoid earlier failure of the considered joint in strength tests.

Keywords

composite panel, metal-composite joint, analysis model, strength criterion, buckling, test results, failure load

References

[1] Irving P. E., Soutis C. Polymer Composites in the Aerospace Industry (Second Editions) // Woodhead Publishing, 2019, 688 p.

[2] Solomonov Yu. S., Georgiyevskiy V. P., Nedbay A. Ya., Andryushin V. A. Prikladnyye zadachi mekhaniki kompozitnykh tsilindricheskikh obolochek [Applied problems of mechanics of composite cylindrical shells]. Moscow, Fizmatlit, 2014, 408 p. (In Russian)

[3] Zamula G. N., Kolesnik K. А. Sposoby povysheniya vesovoy effektivnosti primeneniya kompozitsionnykh konstruktsiy [Weight saving technique for composite structures] // Polyot, 2018, no. 10, pp. 14–24. (In Russian)

[4] Vasil'ev V. V., Barynin V. A., Razin A. F., Petrokovskii S. A., Khalimanovich V. I. Anizogridnyye kompozitnyye setchatyye konstruktsii – razrabotka i prilozheniye k kosmicheskoy tekhnike [Anisogrid composite lattice structures – development and aerospace application] // Composites and Nanostructures, 2009, no. 3, pp. 38–50. (In Russian)

[5] Bakhvalov Yu. J., Petrokovskiy S. A., Polinovskiy V. P., Bakhtin A. G. Osobennosti proyektirovaniya kompozitnykh setchatykh otsekov, svyazannyye s usloviyami ikh nagruzheniya [Peculiarities of designing of composite lattice compartments explained by their loading conditions] // Composite materials constructions, 2009, no. 4, pp. 34–43. (In Russian)

[6] Grishin V. I., Dzuba A. S., Dudarkov Yu. I. Prochnost i ustoychivost elementov i soyedineniy aviatsionnykh konstruktsiy iz kompozitov [The strength and buckling of elements and fittings of composite aircraft structures]. Moscow, Fizmatlit, 2013, 272 p. (In Russian)

[7] Dudarkov Yu. I., Levchenko E. A., Limonin M. V. Vliyaniye struktury paketa na krayevyye effekty v sloistykh kompozitakh [The influence of laminate stacking sequence on layered composites edge effect] // The Research of the Science City, 2014, no. 3 (9), pp. 25–30. (In Russian)

[8] Dumansky A. M., Tairova L. P., Gorlach I., Alimov M. A. Raschetno-eksperimentalnyye issledovaniya nelineynykh svoystv ugleplastikov [A design-experiment study of nonlinear properties coal-plastic] // J. Mach. Manuf, Reliab. 2011, no. 5, pp. 91–97. (In Russian)

[9] Dudarkov Yu. I., Levchenko E. A., Limonin M. V. Nekotoryye osobennosti otsenki nesushchey sposobnosti stringernykh paneley iz PKM [Some feature of CFRP stringer Panels Load Bearing Capacity estimation] // Mechanics of Composite Materials and Structures, 2019, vol. 25, no. 2, pp. 192–206. (In Russian)

[10] Dudarkov Yu. I., Limonin M. V., Naumov S. M. Raschetno-eksperimental’noe issledovanie zakriticheskogo deformirovaniya plastin s ispol’zovaniem nelineinogo MKE [Numerical and experimental study of the postbuckling deformation of the plates by the means of non-linear FE method] // Trudy TsAGI, 2011, issue 2698, pp. 70–81. (In Russian)

[11] McCarthy M. A. BOJCAS: Bolted Joints in Composite Aircraft Structures // Air&Space Europe, 2001, vol. 3, no. 3/4, pp. 21–28.

[12] McCarthy C. T., McCarthy M. A., Gilchrist M. D. Predicting Failure in Multi-Bolt Composite Joints Using Finite Element Analysis and Bearing-Bypass Diagrams // Key Engineering Materials, 2005, vol. 293–294, pp. 591–598.

[13] Polilov A. N., Tatus’ N. A. Biomekhanika prochnosti voloknistykh kompozitov [Strength Biomechanics of fibrous composites]. Moscow, Fizmatlit, 2018, 328 p. (In Russian)

[14] Tsai S. W. Strength theories of filamentary structures // Schwartz R. T., Schwartz H. S. (Eds.). Fundamental aspects of fiber reinforced plastic composites, New York, Wiley Interscience, 1968, pp. 3–11.

[15] Sirotkin O. S., Grishin V. I., Litvinov V. B. Proektirovanie, raschet i tekhnologiia soedinenii avia-tsionnoitekhniki [Design, calculation and technology of aircraft connections]. Moscow, Mashinostroenie, 2006, 330 p. (In Russian)

[16] Borovskaya Ya. S., Glebova M. A., Grishin V. I., Guseva N. V. Otsenka prochnosti metallo-kompozitnykh soyedineniy s primeneniyem kriteriya Nuizmera [Estimation of the strength of metal-composite joints using the Nuismer criterion] // TsAGI Science Journal, 2018, vol. XLIX, no. 2. pp. 84–92. (In Russian)

[17] Grishin V. I., Kacharava I. N., Bespalov V. A., Gotseljuk T. B. O primenenii modifitsirovannogo kriteriya Nuizmera k raschetu prochnosti metalo-kompozitnykh soyedineniy [About application of modified Nuismer criterion to analysis of strength of metal-composite joints] // Mechanics of Composite Materials and Structures, 2013, vol. 19, no. 1. pp. 14–34. (In Russian)

[18] ASTM D6742/D6742M-12: Standard Practice for Filled-Hole Tension and Compression Testing of Polymer Matrix Composite Laminates // West Conshohocken, ASTM International, 2012.



For citing this article

Grishin V.I., Glebova M.A., Dudarkov Yu.I., Levchenko E.A., Limonin M.V. Strength analysis of structural elements and metal-composite joints of a flying vehicle // Spacecrafts & Technologies, 2020, vol. 4, no. 4, pp. 191-200. doi: 10.26732/j.st.2020.4.01


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).