Article


Cover

№1 2021

Title

Low-thrust liquid-propellant rocket engines as part of advanced ultralight rocket vehicle systems

Authors

T.A. Basharina, M.G. Goncharov, S.N. Lymich, V.S. Levin, D.P. Shmatov

Organization

Voronezh State Technical University
Voronezh, Russian Federation

Abstract

This work examines the most promising design solutions for the creation of propulsion systems for ultra-light launch vehicles by small private enterprises in the rocket and space industry. Comparison of the metal consumption of the combustion chambers with the energy characteristics at different operating pressures showed that the most optimal operating pressure is 12,16 MPa. Comparison of the relative and absolute values of the masses of various configurations describes the nature of the relationship between the number of combustion chambers and the total mass of the propulsion system. It was found that nine-chamber propulsion systems with cameras made with extensive use of additive technologies best meet the key requirements. The analysis carried out includes an assessment of the design parameters of both various components and assemblies and the propulsion system as a whole. Various layouts of propulsion systems are considered in detail, the required degree of technological complexity of structures of various units and assemblies, their production cost are estimated. The ratio of the obtained mass-energy characteristics was achieved through the implementation of design solutions that became available due to the use of additive technologies. The obtained results of preliminary calculations demonstrate the applicability and efficiency of design solutions considered for use in the propelled propulsion system for a promising launch vehicle.

Keywords

rocket engine, low-thrust engine, methane fuel, ultralight carrier, additive technology, economic efficiency, private space company

References

[1] Klyushnikov V. Yu. Rakety-nositeli sverhlegkogo klassa: nisha na rynke puskovyh uslug i perspektivnye proekty [Ultra-light launch vehicles: a niche in the launch services market and promising projects] // Aerospace Sphere Journal, 2019, no. 3 (100), pp. 58–71. (In Russian)

[2] Danilyuk A. Yu., Klyushnikov V. Yu., Kuznetsov I. I., Osadchenko A. S. Trebovaniya k obliku i osnovnym proektnym parametram mikroraketnogo kompleksa, prednaznachennogo dlya zapuska malyh kosmicheskih apparatov razmernostej «nano», «piko» i «femto» [Requirements for the appearance and main design parameters of a microrocket complex intended for launching small spacecraft of dimensions «nano», «pico» and «femto»] // Vestnik «NPO im. S. A. Lavochkina», 2015, no. 3, pp. 107–113. (In Russian)

[3] Ganiev T. A., Karjakin V. V. Kosmicheskaya politika mirovyh i regional'nyh derzhav [Space policy of world and regional powers]. Moscow, Arhont, 2020, 175 p. (In Russian)

[4] Lin Industrial – Adler Light Rocket. Available at: spacelin.ru/proekty/legkaya-raketa-adler (accessed 11.11.2020).

[5] Pervov M. A. Istoriya razvitiya otechestvennyh raketno-kosmicheskih dvigatel'nyh ustanovok [History of the development of domestic rocket and space propulsion systems]. Moscow, Capital Encyclopedia, 2018, 656 p. (In Russian)

[6] Vasiliev A. P., Kudryavtsev V. M., Kuznetsov V. A., Kurpatenkov V. D., Obelnitsky A. M., Polyaev V. M., Poluyan B. Ya. Osnovy teorii i rascheta zhidkostnyh raketnyh dvigatelej [Fundamentals of theory and calculation of liquid-propellant rocket engines]. Moscow, Higher school, 1983, 703 p. (In Russian)

[7] Nesterov V. E., Kuzin A. I., Rachuk V. S. Osobennosti primeneniya marshevyh ZHRD v sostave pervoj stupeni perspektivnoj mnogorazovoj raketno-kosmicheskoj sistemy [Features of using sustainer rocket engines as part of the first stage of a promising reusable rocket-space system] // Aviakosmicheskaya tekhnika i tekhnologiya, 2010, no. 3, pp. 25–32. (In Russian)

[8] Erokhin B. T. Teoriya i proektirovanie raketnyh dvigatelej [Theory and design of rocket engines]. Saint-Petersburg, Lan, 2015, 608 p. (In Russian)

[9] Firefly. Available at: firefly.com/launch-alpha/ (accessed 11.11.2020).

[10] Rocket Lab. Available at: www.rocketlabusa.com/electron/ (accessed 11.11.2020).

[11] Nesterov V. E. Mnogorazovaya raketno-kosmicheskaya sistema. Innovacionnoe razvitie rossijskih sredstv dostupa v kosmicheskoe prostranstvo [Reusable space rocket system. Innovative development of Russian means of access to outer space] // Double technologies, 2012, no. 1 (58), pp. 13–18. (In Russian)

[12] Basharina T. A., Goncharov M. G., Menshikh V. V., Ilyina A. K., Turishchev M. Yu., Shmatov D. P. Razrabotka zhidkostnogo raketnogo dvigatelya maloj tyagi dlya raket sverhlegkogo klassa [Development of a low-thrust liquidpropellant rocket engine for ultralight missiles] // Proceedings of Eighth Utkin Readings, Saint-Petersburg, 2019, pp. 26–29. (In Russian)

[13] Kovateva Yu. S., Vorobiev A. G., Borovik I. N., Khokhlov A. N., Kazennov I. S. Zhidkostnyj raketnyj dvigatel' maloj tyagi na toplive gazoobraznyj kislorod i gazoobraznyj metan [Liquid-thrust rocket engine powered by gaseous oxygen and gaseous methane] // Aerospace MAI Journal, 2011, vol. 18, no. 3, pp. 45–54. (In Russian)



For citing this article

Basharina T.A., Goncharov M.G., Lymich S.N., Levin V.S., Shmatov D.P. Low-thrust liquid-propellant rocket engines as part of advanced ultralight rocket vehicle systems // Spacecrafts & Technologies, 2021, vol. 5, no. 1, pp. 5-13. doi: 10.26732/j.st.2021.1.01


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).