Article


Cover

№2 2021

Title

The vibration origin in the electric pump of the spacecraft and methods to reduce them

Authors

Z.A. Yudina, M.I. Sinichenko, A.P. Ladigin, F.K. Sin'kovskiy, D.B. Usmanov

Organization

JSC «Academician M. F. Reshetnev» Information Satellite Systems»
Zheleznogorsk, Krasnoyarsk region, Russian Federation

Abstract

The important problem for rocket-space, aviation and transport equipment fields is designing high-resource electric pumps. Electric pumps are active energy conversion devices to provide the thermal control system operation. Electric pumps failure leads to fault of the interfaced equipment, system failures and significant economic damage accidents. The most unfavorable factor for electric pump reliability is vibration. That the reason of relevance, practicability and importance to research the electric pumps vibration activity, the reasons for the appearance of vibrations and ways to control them. The paper provides the main sources of electric pump of the spacecraft vibrations as mechanical, hydrodynamic and electrical. This paper presents the recommendations of foreign and domestic authors to control each vibration source. To solve the problem of reducing the electric pump vibration activity the research of the technical level of existing developments, results, main technical solutions and technical solutions trends was produced. The main directions of further electric pump vibration activity researches leading to decreasing of vibration activity were defined on this paper.

Keywords

electric pump, spacecraft, vibration

References

[1] Kuznetsova Z. A., Sinichenko M. I., Kuznetsov A. D., Kleshnina I. A., Sin’kovskiy F. K. Study of impeller design parameters effect on the axial thrust of a centrifugal electric pump assembly // Siberian Journal of Science and Technology, 2020, vol. 21, no. 3, pp. 389–399. doi: 10.31772/2587-6066-2020-21-3-389-399

[2] Kraev M. V., Lukin V. A., Ovsyannikov B. V. Maloraskhodnye nasosy aviatsionnykh i kosmicheskikh system [Lowflow pumps of aviation and space systems]. Moscow, Mashinostroenie Publ., 1985, 128 p.

[3] Grigor'eva N. V. Vibratsiya energeticheskikh mashin. Spravochnoe posobie [Vibration of power machines. Reference manual]. St. Petersburg, Mashinostroenie Publ., 1974, 464 p. (In Russian)

[4] Perevoshchikov S. I. Razrabotka nauchnykh osnov upravleniya vibratsiei gidrodinamicheskogo proiskhozhdeniya v tsentrobezhnykh nasosakh magistral'nykh nefteprovodov [Development of scientific foundations for vibration control of hydrodynamic origin in centrifugal pumps of main oil pipelines] : Doct. Diss. Tyumen', TyumGNGU Publ., 2004, 347 p. (In Russian)

[5] Bykhovskii I. I. Osnovy teorii vibratsionnoi tekhniki [Foundations of the theory of vibration technology]. Moscow, Mashinostroenie Publ., 1968, 362 p.

[6] Dzhafari P. Snizhenie vibracii gidrodinamicheskogo proiskhozhdeniya nasosno-silovyh agregatov [Reduction of vibration of hydrodynamic origin of pumping and power units]. Nauchnyi vestnik MGTU GA, 2011, no. 173, pp. 137–140. (In Russian)

[7] Hammond, Osama H. I. Compound fault diagnosis of centrifugal pumps using vibration analysis techniques : doctoral thesis. University of Huddersfield, 2018, 181 p.

[8] Luo Y., Yuan Sh., Yuan J., Lu J. Research on Characteristic of the vibration spectral entropy for centrifugal pump // Hindawi Publishing Corporation Advances in Mechanical Engineering, 2014, 9 p.

[9] Si Q., Yuan Sh., Yuan J., Liang Y. Investigation on Flow-induced noise due to backflow in low specific speed centrifugal pumps // Hindawi Publishing Corporation Advances in Mechanical Engineering, 2013, 11 p.

[10] Lu J., Liu X., Zeng Y., Zhu B., Hu B., Yuan Sh., Hua H. Detection of the flow state for a centrifugal pump based on vibration // MDPI, 2013, 18 p.

[11] Cui B., Li J., Zhang Ch., Zhang Y. Analysis of radial force and vibration energy in a centrifugal pump // Hindawi Mathematical Problems in Engineering, 2020, 12 p.

[12] Basic principles for the design of centrifugal pump installations. Sterling SIHI, 2003, 389 p.

[13] Yang A., Lang D., Li G., Chen E., Dai R. Numerical research about influence of blade outlet angle on flow-induced noise and vibration for centrifugal pump // Hindawi Publishing Corporation Advances in Mechanical Engineering, 2014, 11 p.

[14] Zhang X., Wang P., Ruan X., Xu Zh., Fu X. Analysis of pressure pulsation induced by rotor-stator interaction in nuclear reactor coolant pump // Hindawi Shock and Vibration, 2017, 18 p.

[15] M.M.E. van Osch. Rotor dynamics of a centrifugal pump. Technische Universiteit Eindhoven, 2006, 54 p.

[16] Bobkov A. V. Povyshenie effektivnosti malorazmernykh tsentrobezhnykh nasosov aviakosmicheskikh energosilovykh ustanovok i sistem termoregulirovaniya [Improving the efficiency of small-sized centrifugal pumps of aerospace power plants and thermal control systems] : Doct. Diss. Moscow, 2004, 399 p. (In Russian)

[17] Wu Y., Li S., Liu S., Dou H.-S., Qian Z. Vibration of Hydraulic Machinery, Springer, 2013, 500 p.

[18] Kuz'min A. V. Issledovanie kharakteristik lopastnogo nasosa dlya dobychi nefti pri izmenenii geometrii protochnoi chasti ego stupeni [Study of the characteristics of a vane pump for oil production when changing the geometry of the flow path of its stage] : Cand. Diss. Moscow, 2018, 257 p. (In Russian)

[19] Perevoshchikov S. I. Konstruktsiya tsentrobezhnykh nasosov (obshchie svedeniya) [The design of centrifugal pumps (general information)]. Tyumen', TyumGNGU Publ., 2013, 228 p. (In Russian)

[20] Ivanov Ya. N., Ivchenko L. F., Steblovtsev A. A., Shnyakin V. N. Razrabotka konstruktsii i issledovanie elektronasosnogo agregata s resursom raboty bolee 35000 chasov [Design development and research of an electric pump unit with a service life of more than 35000 hours] // Aerospace technic and technology, 2003, no. 5, pp. 114–117. (In Russian)

[21] Chelomei V. N. Vibratsii v tekhnike [Vibration in technology: a Handbook]. Moscow, Mashinostroenie Publ., 1980, vol. 3, 544 p. (In Russian)

[22] Kutsubina N. V., Sannikov A. A. Teoriya vibrozashchity i akusticheskoi dinamiki mashin: uchebnoe posobie [Theory of vibration protection and acoustic dynamics of machines: a tutorial]. Ekaterinburg, UGLTU Publ., 2014, 167 p. (In Russian)

[23] Kraev M. V., Lukin V. A. Ovsyannikov B. V. Maloraskhodnye nasosy aviatsionnykh i kosmicheskikh system [Lowflow pumps for aircraft and space systems]. Moscow, Mashinostroenie Publ., 1985, 128 p. (In Russian)

[24] Nurulhusna binti Mohd Mohtar. Vibration analysis of centrifugal pump : Dissertation of the Bachelor of Engineering, Universiti Teknologi Petronas, 2013, 37 p.

[25] Volokhovskaya O. A. Snizhenie vibroaktivnosti centrobezhnyh nasosov putem izmeneniya posledovatel'nosti raspolozheniya rabochih koles na osi vala [Reducing the vibration activity of centrifugal pumps by changing the sequence of the impellers on the shaft axis]. Engineering and automation problems, 2010, no. 4, pp. 10–22. (In Russian)

[26] Volokhovskaya O. A. Ob odnom podhode k snizheniyu urovnya vibracij pogruzhnyh centrobezhnyh nasosov dlya neftedobychi [On one approach to reducing the vibration level of submersible centrifugal pumps for oil production]. Vestnik of Lobachevsky University of Nizhni Novgorod, 2011, no. 4 (2), pp. 82–84. (In Russian)

[27] Valyukhov S. G., Yaroslavtsev S. V., Patrakhin R. I. Eksperimental'noe issledovanie vliyaniya parametrov uprugoj mufty i disbalansa konsol'nyh nasosov na uroven' vibroaktivnosti [Experimental study of the influence of elastic coupling parameters and unbalance of cantilever pumps on the level of vibration activity] / Proceedings of the X International Scientific and Technical Conference «SPT'19», 2019, pp. 134–142. (In Russian)

[28] Ryakhovsky O. A., Obozny Yu. S., Kushnarev V. I., Guskov A. M. Magistral'nyi neftyanoi tsentrobezhnyi nasos s rotorom na podshipnikakh kacheniya i sposob uluchsheniya kharakteristik nasosa [Mainline oil centrifugal pump with a rotor on rolling bearings and a method for improving pump performance]. Patent RU 2485352, 2013, bulletin no. 17.

[29] Burgett D., Khartman Yu., Khel'dmann I. Vibroizolyatsionnyi kompozitnyi material podshipnika skol'zheniya, vkladysh podshipnika skol'zheniya i uzel podshipnika skol'zheniya [Vibration-insulating composite material for plain bearing, sleeve for sleeve bearing and sleeve bearing assembly]. Patent RU 2461746, 2012, bulletin no. 26.

[30] Dry journal bearing. Patent US 3881791, 1975.

[31] Merot Ph., Bozet J. L., Poysat P. Polymeric bearing with elastomer. Patent 2003/0012467 USA, 2003.

[32] Bogun V. S., Voitov S. N. Mnogostupenchatyi tsentrobezhnyi nasos [Multistage centrifugal pump]. Patent RU 2361117, 2009, bulletin no. 19.

[33] Bloch H. P., Budris A. R. Pump user’s handbook life extension. Third edition. Fairmont Press Publ., 2010, 506 p.

[34] Harris T. A., Kotzalas M. N. Essential Concepts of Bearing Technology. Fifth edition. CRC Press Publ., 2007, 375 p.

[35] Ovacikli A. K. Condition Monitoring of Ball Bearings Using Vibration Analysis. Lulba University of Technology Publ., 2010, 54 p.

[36] Jauregui Correa J. C., Lozano Guzman A. Mechanical vibrations and condition monitoring. Elsevier Publ., 2020, 202 p.

[37] Shubov I. G. Shum i vibratsiya elektricheskikh mashin [Noise and vibration of electrical machines]. St. Petersburg, Energoatomizdat Publ., 1986, 208 p. (In Russian)

[38] Korotkov E. B., Slobodzyan N. S., Shirobokov O. V., Kiselev A. A., Nadezhin M. I. Complex ground diagnostic system for spacecraft electromechanical devices // Radio industry, 2019, no. 4, pp. 54–62. doi: 10.21778/2413-9599-2019-29-4-54-62

[39] Matveev S. A., Zhukov Y. A., Korotkov E. B., Shirobokov O. V., Nadezhin M. I., Ladygin A. P. Overview of diagnostic methods for electric pump units of satellite platforms // Radio industry, 2020, vol. 30, no. 3, pp. 86–98. doi: 10.21778/2413-9599-2019-30-3-86-98

[40] Loganov A. A., Ovechkin G. I., Borodin L. M., Sinichenko M. I., Shilkin O. V. Elektronasosnyi agregat [Electric pumping unit]. Patent RU 2574782, 2016, bulletin no. 4.

[41] Belousov N. I. Mnogostupenchatyi elektronasosnyi agregat [Multistage electric pump unit]. Patent RU 2162547, 2001, bulletin no. 3.

[42] Loganov A. A., Ovechkin G. I., Borodin L. M., Sinichenko M. I., Smirnov V. V., Volovikov V. G. Dvuhstupenchatyj elektronasosnyj agregat [Two-stage electric pump unit]. Patent RU 2618777, 2008, bulletin no. 14.

[43] Heat exchange module and serial pump thereof. Patent US 10198046, 2016.

[44] Electro motor driven pump. Patent US 10465679, 2014.

[45] Electro motor, pump divice using electric motor, and stator. Patent US 2167341, 2013.

[46] Belousov N. I. Elektronasosnyi agregat [Electric pump unit]. Patent RU 2208183, 2003, bulletin no. 19.

[47] Belousov N. I. Dublirovannyi elektronasosnyi agregat [The duplicated electric pumping unit]. Patent RU 2160389, 2000, bulletin no. 34.

[48] Belousov N. I. Rezervirovannyi elektronasosnyi agregat [Redundant electric pump unit]. Patent RU 2160390, 2000, bulletin no. 34.

[49] Belousov N. I. Elektronasosnyi agregat [Electric pump unit]. Patent RU 2329401, 2008, bulletin no. 20.

[50] Belousov N. I. Dublirovannyi elektronasosnyi agregat [The duplicated electric pumping unit]. Patent RU 2357104, 2009, bulletin no. 15.

[51] Belousov N. I. Dublirovannyi elektronasosnyi agregat [The duplicated electric pumping unit]. Patent RU 2511788, 2014, bulletin no. 10.

[52] Belousov N. I. Dublirovannyi elektronasosnyi agregat [The duplicated electric pumping unit]. Patent RU 2329402, 2008, bulletin no. 20.

[53] Belousov N. I. Dublirovannyi elektronasosnyi agregat [The duplicated electric pumping unit]. Patent RU 2599402, 2016, bulletin no. 28.

[54] Belousov N. I. Elektronasosnyi agregat [Electric pump unit]. Patent RU 2162549, 2001, bulletin no. 3.

[55] Belousov N. I. Elektronasosnyi agregat [Electric pump unit]. Patent RU 2162548, 2001, bulletin no. 3.

[56] Electrically driven pump. Patent US 10415582, 2016.

[57] Electric-motor-driven liquid pump. Patent US 10337513, 2016.

[58] Belousov N. I. Elektronasosnyi agregat [Electric pump unit]. Patent RU 2680635, 2019, bulletin no. 6.

[59] Belousov N. I. Elektronasosnyi agregat [Electric pump unit]. Patent RU 2642877, 2018, bulletin no. 4.

[60] Dvirny V. V., Testoedov N. A., Bartenev V. A., Turkenich R. P., Roskin S. M. Elektronasosnyi agregat [Electric pumping unit]. Patent RU 2396464, 2010, bulletin no. 22.

[61] Belousov N. I. Elektronasosnyi agregat [Electric pump unit]. Patent RU 2357103, 2009, bulletin no. 15.

[62] Belousov N. I. Elektronasosnyi agregat [Electric pump unit]. Patent RU 2358161, 2009, bulletin no. 16.

[63] Electric fuel pump and pump mechanism for a fuel pump. Patent CA 2321608, 2000.

[64] Yaperov I. F. Elektronasosnyi agregat [Electric pumping unit]. Patent RU 45481, 2005, bulletin no. 13.

[65] Electric fuel pump. Patent US 20170363052, 2017.

[66] Electric fuel pump. Patent EU 3258096, 2017.

[67] Electric pump unit. Patent US 10400767, 2015.

[68] Electric coolant pump. Patent US 10415590, 2016.

[69] Automotive electric liquid pump. Patent US 10458414, 2014.

[70] Electric fuel pump uninterrupted power supply. Patent US 10054075, 2017.

[71] System and method for cold temperature control of an electric oil pump. Patent US 10330096, 2014.



For citing this article

Yudina Z.A., Sinichenko M.I., Ladigin A.P., Sin'kovskiy F.K., Usmanov D.B. The vibration origin in the electric pump of the spacecraft and methods to reduce them // Spacecrafts & Technologies, 2021, vol. 5, no. 2, pp. 63-76. doi: 10.26732/j.st.2021.2.01


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).