Article


Cover

№3 2021

Title

Analysis of design of spacecraft solar arrays

Authors

1,3Z.A. Kazantsev, 1,3A.M. Eroshenko, 3L.A. Babkina, 2,3A.V. Lopatin

Organizations

1JSC «Academician M. F. Reshetnev» Information Satellite Systems»
Zheleznogorsk, Krasnoyarsk region, Russian Federation
2Federal Research Center for Information and Computational Technologies SB RAS
Krasnoyarsk, Russian Federation
3Reshetnev Siberian State University of Science and Technology
Krasnoyarsk, Russian Federation

Abstract

Solar arrays supply electrical power to spacecraft equipment and also provide charging of electrochemical batteries used in the shadow sections of the orbit. Photovoltaic converters of light energy of solar radiation form the basis of the solar battery. Their principle of operation is based on the phenomenon of the photoelectric effect. The article provides an overview of the development of solar cells and the classification of modern designs of solar cells for spacecraft. The review considers stationary and deployable solar batteries used both on the first spacecraft and on space stations. The classification of solar cell designs is made taking into account their characteristic features. These features are the rigidity of the supporting structure, the method of placement in the starting position and the method of orientation towards the light source. The classification covered rigid panel solar arrays, flexible substrate solar panels, inflatable solar arrays, self-expanding solar arrays, and solar concentrator panels. In each design group of this classification, corresponding examples of solar cells are presented. The presented review and classification makes it possible to track trends in the development of solar array designs for spacecraft.

Keywords

solar array, spacecraft, mechanical device

References

[1] Vanke V. A. Kosmicheskie energosistemy [Space Energy Systems]. Moscow, Mashinostroenie, 1990, 144 p. (In Russian)

[2] Screbushevsky B. S. Kosmicheskie energeticheskie ustanovki s preobrazovaniem solnechnoj energii [Space Energy Installations with Solar Energy Conversion]. Moscow, Mashinostroenie, 1992, 224 p. (In Russian)

[3] Gushchin V. N. Osnovy ustrojstva kosmicheskogo apparata [Basics of the device of the spacecraft]. Moscow, Mashinostroenie, 2003, 272 p. (In Russian)

[4] Alfers J. I., Andreev V. M., Rumyantsev V. D. Tendencii i perspektivy razvitiya solnechnoj fotoenergetiki. Fizika i tekhnika poluprovodnikov [Trends and prospects for the development of solar photoenergy. Physics and technique of semiconductors]. 2004, vol. 38, issue 8, pp. 937–948. (In Russian)

[5] Rauschenbach H. S. Solar cell array design handbook, 1976, 578 p.

[6] Raushenbach G. Spravochnik po proektirovaniyu solnechnyh batarej [The Handbook of Solar Design]. Moscow, Energoatomizdat, 1983, 360 p. (In Russian)

[7] Jones A. P., Spence B. R. Spacecraft solar array technology trends. IEEE, 1998, pp. 1–13.

[8] Bellan N. V., Bezruchko K. B, Eliseev V. B., Kovalevsky V. V., Letin V. A., Podazov V. P., Fedorovsky A. N. Bortovye energosistemy kosmicheskih apparatov na osnove solnechnyh i himicheskih batarej [Onboard spacecraft power system based on solar and chemical batteries. Part 1]. Kharkov, Kharkov Aviation Institute, 1992, 191 p. (In Russian)

[9] Fiore J., Kramer R., Larkin P., Grebenstein E. Mechanical design and verification of the TOPEX/Poseidon deployable solar array, AIAA, 1994, pp. 125–135.

[10] Garner J. C. Clementine gallium arsenide/germanium solar array // Journal of propulsion and power, 1996, vol. 12, no. 5, pp. 847–851.

[11] Fiebrich H., Haines J. E., Tonicello F. Power system design of the Rosetta Spacecraft // 2nd International Energy Conversion Engineering Conference, Providence, Rhode Island, 2004, pp. 1–7.

[12] Cadogan D. P., Lin J. K. Inflatable solar array // 37th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 1999, pp. 1–9.

[13] Hausgen P. E. AFRL thin film solar cell development and upcoming flight experiments // 2nd International Energy Conversion Engineering Conference. Providence, Rhode Island. 2004. pp. 1–7.

[14] Piszczor M. F. Thin film photovoltaic blanket & array technology development within NASA // 1st International Energy Conversion Engineering Conference, Portsmouth, Virginia, 2003, pp. 1–10.

[15] Jones P. A., White S. F., Harvey J., Smith B. S. A high specific power solar array for low to mid-power spacecraft, 1994, pp. 1–12.

[16] Redell F. H., Lichodziejewski D. Power-scalable inflation-deployed solar arrays // 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Palm Springs, California, 2004, pp. 1–8.

[17] Peypoudat V., Defoort B., Lacour D., Brassier P. Development of a 3.2 m-long inflatable and rigidizable solar array breadboard // 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Austin, Texas, 2005, pp. 1–8.

[18] Stubstad J. M., Lehman D., Stella P. M., Garza R., Murphy D. M, Allen D. M. SCARLET and Deep Space 1: successfully validating advanced solar array technology // 37th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 1999, pp. 1–11.

[19] Stella P. M., Nieraeth D. G., Murphy D. M., Eskenazi M. I., Stubstad J., Highway J. D. Validation of the SCARLET advanced array on DS1 // Intersociety Energy Conversion Engineering Conference, 1999, pp. 1–9.

[20] O'Neill M. J., McDanal A. J., Brandhorst H. W., Piszczor M. F., George P. J., Edwards D. L., Eskenazi M. I., Botke M. M., Jaster P. A. The stretched lens array (SLA): a low-risk, cost-ffective concentrator array offering winglevel performance of 180 w/kg and 300 w/M2 at 300 VDC // 37th Intersociety Energy Conversion Engineering Conference, Washington DC, 2002, pp. 1–6.

[21] Piszczor M. F., O’Neill M. J., Eskenazi M. I., Brandhorst H. W. The stretched lens array SquareRigger (SLASR) for space power // 4th International Energy Conversion Engineering Conference and Exhibit (IECEC), San Diego, California, 2006, pp. 1–8.

[22] Allen D. M. A survey of next generation solar arrays (for spacecraft electric power) // 35th AIAA, Aerospace Sciences Meeting & Exhibit, Reno, NV, 1997, pp. 1–15.

[23] O’Neill M., Howell J., Lollar L., Carrington C., Suzuki N., Piszczor M., Hoppe D., Eskenazi M., Aiken D., Fulton M., Brandhorst H., Schuller M., McDanal A. J. Stretched lens array squarerigger (SLASR): a unique high-power solar array for exploration missions // AIAA, 2005, pp. 1–11.



For citing this article

Kazantsev Z.A., Eroshenko A.M., Babkina L.A., Lopatin A.V. Analysis of design of spacecraft solar arrays // Spacecrafts & Technologies, 2021, vol. 5, no. 3, pp. 121-136. doi: 10.26732/j.st.2021.3.01


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).