Article


Cover

№4 2021

Title

Development and modeling of non-metallic form-forming rigger for manufacture of polymer composition reflectors for satellite antennas

Authors

M.A. Dremukhin, V.N. Nagovitsin

Organization

JSC «Academician M. F. Reshetnev» Information Satellite Systems»
Zheleznogorsk, Krasnoyarsk region, Russian Federation

Abstract

Reducing the time for carrying out the strength analysis of a structure in the process of manufacturing shaping tooling using modern tools of virtual computer design and modeling, namely mathematical 3D modeling in a small-scale production with the use of additive technologies, is the main task. With the help of numerical discretization, the investigated model is divided into a finite set of elements, which can take any form of the element and be defined in different reference systems. This will make it possible to predict approximately numerically the behavior of the material during its deformation under the action of the given loads applied to the 3D model. The use of additive technologies with the use of modern computer modeling, which is based on software, is an urgent task. This approach will make it possible to develop equipment with a complex geometric shape, bypassing the stage of writing control programs and performing labor-intensive operations for the primary processing of the product. This method is based on the process of constructing a 3D model of the shaping tooling that repeats the shape of the reflective surface of the reflector, using modified high-temperature engineering plastics. The process of evaluating the effectiveness of the developed model is shown on the basis of strength calculations, safety factor, deformation, static stress and displacement. The results of the work can be used in the design and manufacture of dimensionally stable products of complex geometric shapes from non-metallic materials used in the aerospace industry.

Keywords

molding equipment, additive technology, 3D model, mathematical modeling.

References

[1] Ponomarev S. V., Belkov A. V. Modelirovanie precizionnyh antennyh reflektorov iz polimernyh kompozicionnyh materialov [Modeling precision antenna reflectors made of polymer composite materials]. Tomsk, NI TSU, 2013, 454 p. (In Russian)

[2] Polyak V. S., Bervalds E. Ya. Precizionnye konstrukcii zerkal'nyh radioteleskopov [Precision designs of mirror radio telescopes]. Riga, Zinatne, 1990, 526 p. (In Russian)

[3] Kocherzhsky G. N. Antenno-fidernye ustrojstva [Antenna-feeder devices]. Moscow, Radio and communication, 1981, 280 p. (In Russian)

[4] Imbriale W. A., Gao S., Boccia L. Space Antenna Handbook. United Kingdom, John Wiley & Sons Ltd, 2012, 744 p.

[5] Chebotarev V. E., Kosenko V. E. Osnovy proektirovaniya kosmicheskikh apparatov informatsionnogo obespecheniya [Fundamentals of spacecraft design information support]. Krasnoyarsk, SibGAU Publ., 2011, 488 p. (In Russian)

[6] Kryzhanovsky V. K., Nikolaev A. F. Tekhnologiya polimernyh materialov [Technology of polymeric materials]. St. Petersburg, Profession, 2008, 544 p. (In Russian)

[7] Kerber M. L., Vinogradov V. M., Golovkin G. S., Berlin A. A. Polimernye kompozicionnye materialy: svojstva, struktura, tekhnologiya [Polymer composite materials: properties, structure, technology]. St. Petersburg, Profession, 2008, 560 p. (In Russian)

[8] Reznik S. V., Primaysov P. V., Azarov A. V. Obosnovanie konstruktivno-komponovochnoj skhemy reflektora zerkal'noj kosmicheskoj antenny s vysokoj stabil'nost'yu formy i maloj pogonnoj plotnost'yu [Substantiation of the design-layout diagram of the reflector of a reflector space antenna with high shape stability and low linear density] // Engineering Journal, 2015, vol. 88, no. 3, pp. 674–680. (In Russian)

[9] Rudakov K. H. Femap 10.2.0. Geometricheskoe i konechno-elementnoe modelirovanie konstrukcij [Femap 10.2.0. Geometric and finite element modeling of structures]. Kiev, KPI, 2011, 317 p. (In Russian)

[10] Clough R. W. The finite element method in plane stress analysis // J. Struct. Div., ASCE, Proc. 2nd A. S. C. E. Conf. on Electronic Computation, 1960, pp. 345–378.

[11] Verzhbitsky V. M. Osnovy chislennyh metodov [Fundamentals of Numerical Methods]. Moscow, High School, 2005, 840 p. (In Russian)

[12] Alyamovsky A. A. SolidWorks 2007/2008. Komp'yuternoe modelirovanie v inzhenernoj praktike [SolidWorks 2007/2008. Computer modeling in engineering practice]. St. Petersburg, BHV-Petersburg, 2008, 1040 p. (In Russian)

[13] Shimkovich D. G. Raschet konstrukcij v MSC/NASTRAN for Windows [Structural analysis in MSC / NASTRAN for Windows]. Moscow, DMK Press, 2003, 448 p. (In Russian)

[14] Bogolyubov B. C. Formoobrazuyushchaya osnastka iz polimernyh materialov [Form-forming equipment made of polymeric materials]. Moscow, Mechanical Engineering, 1979, 183 p. (In Russian)

[15] Zotov O. Yu., Frolov D. A. Osobennosti metoda izgotovleniya izdelij putem poslojnogo naplavleniya materiala [Features of the method of manufacturing products by layer-by-layer fusion of material] // Scientist of the XXI century, 2016, no. 1 (14), pp. 7–11. (In Russian)



For citing this article

Dremukhin M.A., Nagovitsin V.N. Development and modeling of non-metallic form-forming rigger for manufacture of polymer composition reflectors for satellite antennas // Spacecrafts & Technologies, 2021, vol. 5, no. 4, pp. 183-190. doi: 10.26732/j.st.2021.4.01


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).