Article


Cover

№4 2021

Title

Wave theory of the laminated plates with approximate consideration of the transverse shear

Author

A.V. Sibiryakov

Organization

Moscow Aviation Institute (National Research University)
Moscow, Russian Federation

Abstract

Composite materials are widely used in the production of aircraft for various purposes. Having several unique properties, composites, due to their heterogeneous structure, are poorly resistant to shock loads. Impulse action spreads inside the material in the form of stress waves, which are reflected on internal inhomogeneities, can overlap, and create very significant bursts of stress. This often leads to the well-known types of failure – spalling and delamination. Practice shows that these fractures occur almost immediately after the loading impulse. To verify the spalling strength, it is necessary to consider the initial unsteady phase of the response to the external impulse. There are sufficiently reliable theories to verify this strength; usually, they do not take transverse shear into account, otherwise the solution becomes unnecessarily cumbersome and poorly observable. Nevertheless, attempts are often made to refine the calculations by approximate consideration of transverse shear. This article presents the wave theory of laminated plates with approximate consideration of transverse shear. The possibility of specifying the calculation of impulse-loaded plates is considered. The inconsistency of the resulting model is proved.

Keywords

laminated plate, impulse loading, theory of Timoshenko.

References

[1] Vasiliev V. V., Sibiryakov A. V. Impulsnoe lokalnoe nagrugenie sloistoi ortropnoi plastini [Impulsive local loading of a layered orthotropic plate]. Mechanics of Solids, 1990, no. 3, pp. 154–160. (In Russian)

[2] Sibiryakov A. V. Prikladnay teoriy rascheta kompozitnih plastin na deistvie impulse vneshnego davleniy [Applied theory of calculation of composite plates on the action of an external pressure pulse]. BMSTU Journal of Mechanical Engineering, 2002, no. 7, pp. 11–18. (In Russian)

[3] Rahmatulin H. A., Demyanov U. A. Prochnost pri intensivnih kratkovremennih nagruzkah [Strength under intense short-term loads]. Moscow, Izd. fiziko-matematicheskoi literature, 1961, 399 p. (In Russian)

[4] Goldsmit V. Udar. Teoriy udara I fizicheskie svoistva soudaryaemih tel [Impact. Impact theory and physical properties of colliding bodies]. Moscow, Stroiizdat, 1965, 412 p. (In Russian)

[5] Kilchevskii N. A. Teoriy soudareniy tverdih tel [The theory of collision of solids]. Kiev, Naukova Dumka, 1969, 316 p. (In Russian)

[6] Zeldovich Ya. B., Raizer U. P. Fizika udarnih voln i visokotemperaturnih gidrodinamicheskih yavlenii [Physics of shock waves and high temperature hydrodynamic phenomena]. Moscow, Nauka, 1966, 687 p. (In Russian)

[7] Kompozicionnie materiali. Spravochnik [Composite materials]. Kiev, Naukova Dumka, 1985, 592 p. (In Russian)

[8] Krilov A. N. O nekotorih diffencialnih uravneniyh matematicheskoi fiziki [On some differential equations of mathematical physics]. Leningrad, Izd. Akademii Nauk, 1933, 472 p. (In Russian)

[9] Sabodash P. F. Issledovanie rasprostraneniy lineinih vyzkouprugih voln v plastinah konechnoi tolschini [Investigation of the propagation of linear viscoelastic waves in plates of finite thickness] // Prikladnay Mehanika, 1971, vol. VII, issue 4, pp. 66–73. (In Russian)

[10] Sabodash P. F. Nekotorie volnovie dvigeniy uprugoi sredi [Some wave motions of an elastic medium] // Prikladnay Mehanika, 1972, vol. VIII, issue 8, pp. 61–69. (In Russian)

[11] Kolskii G. Volni naprygenii v tverdih telah [Stress waves in solids]. Moscow, Inostrannay Literatura, 1955, 192 p. (In Russian)

[12] Eibramson H. N., Plass H. D., Ripperger E. A. Rasprostranenie voln naprygenii v stergnyh i balkah [Propagation of stress waves in bars and beams] / Sbornik Problemi mehaniki, 1961, no. 3, pp. 25–90. (In Russian)

[13] Nagreli V. E. Otkol pri odnomernom rasprostranenii uprugih voln [Spalling at one-dimensional propagation of elastic and elastoplastic waves with linear hardening] // Prikladnay Mehanika, 1976, vol. XII, issue 1, pp. 77–81. (In Russian)

[14] Gordienko B. A. Reakciy podkreplennih I soosnih cilindricheskih obolochek na udarnuy nagruzku [Reaction of reinforced and coaxial cylindrical shells to shock load] // Prikladnay Mehanika, 1974, vol. X, issue 3, pp. 25–29. (In Russian)

[15] Dgirs T. Issledovanie rasprostraneniy voln v uprugoi cilindricheskoi obolochke metodom vozmuschenii [Study of wave propagation in an elastic cylindrical shell by the perturbation method] // Prikladnay Mehanika, 1972, pp. 66–70. (In Russian)

[16] Ainola L., Nigul U. Volnovie processi deformirovaniy uprugih plit I obolochec [Wave processes of deformation of elastic plates and shells] // Izv. AN ESSR, 1965, vol. XIV, no. 1, pp. 34–45. (In Russian)

[17] Baganov V. G., Kibec A. I. Chislennoe modelirovanie trehmernih zadach nestacionarnogo deformirivaniy uprugoplasticheskih konstrucii metodom konechnih elementov [Numerical modeling of three-dimensional problems of non-stationary deformation of elastoplastic structures by the finite element method] // Izv. RAN. Mehanika tverdogo tela, 1994, no. 1, pp. 52–59. (In Russian)

[18] Guz A. N., Kubenko V. D. Teoriy nestacionarnoi aerouprugosti obolochek [The theory of unsteady aerohydroelasticity of shells]. Kiev, Naukova Dumka, 1982, 399 p. (In Russian)

[19] Evseev E. G., Morozov E. V. Neploskaya deformatsiya tonkostennogo kompozitnogo sterzhnya pri dinamicheskom nagruzhenii [Out-of-plane deformation of a thin-walled composite bar under dynamic loading]. Izv. RAN. Mehanika tverdogo tela, 1994, no. 5, pp. 159–168. (In Russian)

[20] Ilgamov M. A., Ivanov V. A., Gulin B. V. Prochnost, ustoychivost i dinamika obolochek s uprugim eapolnitelem [Strength, stability, and dynamics of shells with elastic filler]. Moscow, Nauka, 1977, 333 p. (In Russian)

[21] Metsaveer Ya. A., Veksler N. D., Stulov A. S. Difraktsiya akusticheskikh impulsov na uprugikh telakh [Diffraction of acoustic pulses by elastic bodies]. Moscow, Nauka, 1979, 238 p. (In Russian)

[22] Soldatov A. S. Nelineynaya dinamika i probivaniye ortotropnykh plastin [Nonlinear dynamics and punching of orthotropic plates] : PhD theses, Moscow, 1999, 138 p. (In Russian)

[23] Filippov A. P., Yanyutin E. G. Opredeleniye nachalnogo napryazhennogo sostoyaniya pologoy sfericheskoy obolochki pri deystvii dinamicheskoy nagruzki [Determination of the initial stress state of a shallow spherical shell under the action of a dynamic load] // Prikladnay Mehanika, 1972, vol. VIII, issue 12, pp. 118–120. (In Russian)

[24] Filippov A. P., Kokhmanyuk S. S., Yanyutin E. G. Deformirovaniye elementov konstruktsiy pod deystviyem udarnykh i impul'snykh nagruzok [Deformation of structural elements under the influence of shock and impulse loads]. Kiev, Naukova Dumka, 1978, 184 p. (In Russian)

[25] Sibiryakov A. V. Dinamika sloistyh kompozicionnyh plastin i obolochek pri impul'snom nagruzhenii [Dynamics of layered composite plates and shells at impulse loading] : Doctoral theses, Moscow, 2002, 319 p. (In Russian)



For citing this article

Sibiryakov A.V. Wave theory of the laminated plates with approximate consideration of the transverse shear // Spacecrafts & Technologies, 2021, vol. 5, no. 4, pp. 233-241. doi: 10.26732/j.st.2021.4.07


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).