№1 2022


Mobile complex of electronic countermeasures of satellite navigation systems for unmanned aerial vehicles


A.B. Gladyshev, A.N. Fomin, D.S. Ermolenko


Siberian Federal University
Krasnoyarsk, Russian Federation


In this time using small unmanned pilot apparitions, weight until 10 kg in search and sabotage target acquires more and more relevance. Besides using resources of radiolocation for searching come less effective. It is due to small sizes unmanned pilot apparition, materials which are used in this and low flying of apparitions. Because more effective resources nitralisation small unmanned pilot apparition is instrument of radio-electronic suppression. Use in unmanned satellite systems of navigation with replacing antenna include navigation receivers in the upper hemisphere of apparitions create some problem of jamming by ground-based means of radioelectronic suppression. In this document provide variant of mobile complex include radio-electronic suppression satellite systems of navigation unmanned pilot apparitions with using passive radio-reflection with aerodynamic stabilization devices. This complex of model, calculated power jamming signal, defined using range of transmitting device, retold types of transmitting antennas used.


satellite navigation, UAV, electronic countermeasures, passive radio reflector


[1] Zaitsev A. V. Kompleksnaya sistema protivodejstviya bespilotny`m letatel`ny`m apparatam [A comprehensive system for countering unmanned aerial vehicles] // News of the Russian Academy of Missile and Artillery Sciences, 2018, no. 3 (103), pp. 21–25. (In Russian)

[2] Gulidov A. A., Yeltsov O. N., Yakovlev R. S. Bor`ba s bespilotny`mi kompleksami – novaya zadacha radioe`lektronnoj bor`by` [The fight against unmanned complexes is a new task of electronic warfare] // Electronic warfare in the Armed Forces of the Russian Federation, 2016, P. 44. (In Russian)

[3] Makarenko S. I. Analiz sredstv i sposobov protivodejstviya bespilotny`m letatel`ny`m apparatam. Chast` 3. Radioe`lektronnoe podavlenie sistem navigacii i radiosvyazi [Analysis of means and methods of countering unmanned aerial vehicles. Part 3. Electronic suppression of navigation and radio communication systems] // Control, communication and safety systems, 2020, no. 2, pp. 101–175. doi: 10.24411/2410-9916-2020-10205. (In Russian)

[4] Garin E. N. Voenno-tekhnicheskaya podgotovka. Voenno-tekhnicheskie osnovy postroeniya sredstv i kompleksov radioelektronnogo podavleniya [Military-technical training. Military-technical foundations for the construction of means and complexes of electronic suppression]. Krasnoyarsk, SibFU, 2021, 478 p. (In Russian)

[5] Kobak V. O. Radiolokacionny`e otrazhateli [Radar reflectors]. Moscow, Soviet radio, 1975, pp. 101–105. (In Russian)

[6] Bazovoe antenno-fil'trovoe oborudovanie [Basic antenna-filter equipment]. Available at: (accessed 01.11.2021). (In Russian)

[7] JSC «KOBRA». Available at: (accessed 04.11.2021). (In Russian)

[8] GOST 618–2014 «Fol'ga alyuminievaya dlya tekhnicheskih celej. Tekhnicheskie usloviya» [State Standard 618–2014 «Aluminum foil for technical purposes. Specifications»]. (In Russian)

[9] Dyatlov A. P., Dyatlov P. A., Kulbikayan B. Kh. Radioe`lektronnaya bor`ba so sputnikovy`mi radionavigacionny`mi sistemami [Electronic warfare with satellite radio navigation systems]. Moscow, Radio and communications, 2004, 226 p. (In Russian)

[10] Makarenko S. I. Protivodejstvie bespilotny`m letatel`ny`m apparatam [Opposition to unmanned aerial vehicles]. St. Petersburg, Science-intensive technologies, 2020, 204 p. (In Russian)

[11] Tyapkin V. N., Garin E. N. Metody opredeleniya navigacionnyh parametrov podvizhnyh sredstv s ispol'zovaniem sputnikovoj radionavigacionnoj sistemy GLONASS [Methods for determining the navigation parameters of mobile vehicles using the GLONASS satellite radio navigation system]. Krasnoyarsk, SibFU, 2012, 259 p. (In Russian)

For citing this article

Gladyshev A.B., Fomin A.N., Ermolenko D.S. Mobile complex of electronic countermeasures of satellite navigation systems for unmanned aerial vehicles // Spacecrafts & Technologies, 2022, vol. 6, no. 1, pp. 38-44. doi: 10.26732/

Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).