№2 2022


The effect of laser surface treatment of titanium samples on the adhesive strength of adhesive joints


1A.V. Girn, 1M.S. Rudenko, 2V.B. Taigin, 1A.E. Mikheev, 1D.V. Ravodina


1Reshetnev Siberian State University of Science and Technology
Krasnoyarsk, Russian Federation
2JSC «Academician M. F. Reshetnev» Information Satellite Systems»
Zheleznogorsk, Krasnoyarsk region, Russian Federation


The article considers the strength of adhesive joints of specimens made of OT-4 titanium alloys, the surface of which has been treated with laser radiation. The paper presents the results of the dependence of the macro- and microgeometry of the obtained surface, chemical composition, wetting angle and adhesion strength of adhesive joints under shear on laser processing modes. The purpose of this work is to determine the optimal parameters of laser processing for obtaining high strength adhesive joints. The results obtained can be used for gluing spacecraft structural elements. The studies were carried out on the adhesive pair «Titan – Titan». Depending on the processing mode, characteristic surface textures were identified, which were combined into groups «B», «K» and «C». High-energy modes of laser surface treatment of samples before gluing lead to a significant increase in the strength characteristics of the adhesive joint (up to 70 %) due to an increase in the area of the gluing surface and mechanical locking of the adhesive in the microrelief of the texture of the samples. In addition, the use of this method, in comparison with mechanical and chemical methods, significantly increases the productivity of surface treatment.


adhesive joint, titanium alloy, shear strength, laser processing


[1] Sibileva S. V., Karimova S. A. Obrabotka poverkhnosti titanovykh splavov dlya obespecheniya adgezionnykh svoystv (obzor) [Surface treatment of titanium alloys to provide adhesion properties] // Aviation Materials and Technologies, 2013, no. 2, pp. 25–35. (In Russian)

[2] Allen K. W., Alsalim H. S. Titanium and alloy surfaces for adhesive bonding // J. Adhesion, 1974, vol. 6, pp. 229–237.

[3] Molitor P., Young T. Adhesives bonding of a titanium alloy to a glass fibre reinforced composite material // Int. J. Adhes. Adhes., 2002, vol. 22, pp. 101–107.

[4] Ramani K., Weidner W. J., Kumar G. Silicon sputtering as a surface treatment to titanium alloy for bonding with PEKEKK // Int. J. Adhes. Adhes., 1998, vol. 18, pp. 401–412.

[5] Akram M., Jansen K. M. B., Ernst L. J., Bhowmik S. Atmospheric pressure plasma surface modification of titanium for high temperature adhesive bonding // Int. J. Adhes. Adhes., 2011, vol. 31, pp. 598–604.

[6] Venables J. D. Review: adhesion and durability of metal–polymer bonds // J. Mater. Sci., 1984, vol. 19, pp. 2431–2453.

[7] Nagaoka A., Yokoyama K., Sakai J. Evaluation of hydrogen absorption behavior during acid etching for surface modification of commercial pure Ti, Ti–6Al–4V and Ni–Ti superelastic alloys // Corrosion Science, 2010, vol. 52, pp. 1130–1138.

[8] Smith T. A Surface treatment for Ti–6AI–4V // J. Adhes., 1983, vol. 15, no. 2, pp. 137–150.

[9] Mahoon A. Titanium adherends // Durability of structural adhesives, 1983, P. 255.

[10] Ditchek B. M., Breen K. R., Sun T. S., Venables J. D. Morphology and composition of titanium adherends prepared for adhesive bonding // Proc. 25th Nat. SAMPE Symp., 1980, pp. 13–24.

[11] Assefpour-Dezfuly M., Vlachos C., Andrews E. H. Oxide morphology and adhesive bonding on titanium surfaces // J. Mater. Sci., 1984, vol. 19, pp. 3626–3639.

[12] Suminov I. V., Epelfeld A. V., Lyubov V. B., Crete B. L., Borisov A. M. Mikrodugovoe oksidirovanie: teoriya, tekhnologiya, oborudovanie [Micro-oxidation: Theory, Technology, Equipment]. Moscow, Ekomet, 2005, 368 p. (In Russian)

[13] Gordienko P. S., Gnedenkov S. V. Mikrodugovoe oksidirovanie titana i ego splavov [Micro-oxidation of titanium and its alloys]. Vladivostok, Dal'nauka, 1997, 185 p. (In Russian)

[14] Kolomeychenko A. V. Tekhnologii povysheniya dolgovechnosti detaley mashin vosstanovleniem i uprochneniem rabochikh poverkhnostey kombinirovannymi metodami s primeneniem mikrodugovogo oksidirovaniya [Technologies for increasing the durability of machine parts by restoring and hardening working surfaces with combined methods using microfrave oxidation]. Orel, Orel GAU, 2013, 255 p. (In Russian)

[15] Fedorov V. A., Belozerov V. V., Velikosel'skaya N. D. Formirovanie uprochnennykh poverkhnostnykh sloev metodom mikrodugovogo oksidirovaniya v razlichnykh elektrolitakh i pri izmenenii tokovykh rezhimov [Formation of hardened surface layers by micro-oxidation in various electrolytes and when changing current modes] // Physics and chemistry of materials treatment, 1991, no. 1, pp. 87–93. (In Russian)

[16] Fundeanu I., Klee D., Kwakernaak A., Poulis J. A. The effect of substituted poly(p-xylylene) on the quality of bonded joints when used as a primer replacement // Int. J. Adhes. Adhes., 2010, vol. 30, pp. 111–116.

[17] Wang Y., Zhang J., Li K., Hu. J. Surface characterization and biocompatibility of isotropic microstructure prepared by UV laser // Journal of Materials Science & Technology, 2021, vol. 94, pp. 136–146.

[18] Wang Y., Zhang M., Li K., Hu J. Study on the surface properties and biocompatibility of nanosecond laser patterned titanium alloy // Optics and Laser Technology, 2021, vol. 139. doi: 10.1016/j.optlastec.2021.106987.

[19] Molitor P., Young T. Investigations into the use of excimer laser irradiation as a titanium alloy surface treatment in a metal to composite adhesive bond // Int. J. Adhes. Adhes., 2004, vol. 24, pp. 127–134.

[20] Rudenko M. S., Marchenko S. V., Radodina D. V., Girn A. V., Mikheev A. E. Sposoby povysheniya adgezii kleevogo soedineniya titanovogo splava [Methods for increasing adhesion of adhesive connection of titanium alloy] // Reshetnev readings: materials of the XXV International conference, Krasnoyarsk, 2021, Part 1, pp. 52–54. (In Russian)

[21] Baburaj E. G., Starikov D., Evans J., Shafeev G. A., Bensaoula A. Enhancement of adhesive joint strength by laser surface modification // Int. J. Adhes. Adhes., 2007, vol. 27, pp. 268–276. doi: 10.1039/tf9444000546.

[22] Cassie A. B. D., Baxter S. Wettability of porous surfaces // Faraday Society, 1944, vol. 40, pp. 546–551.

[23] Patil D., Aravindan S., Wasson M. K., Vivekanandan P., Rao P. V. Fast Fabrication of Superhydrophobic Titanium Alloy as Antibacterial Surface Using Nanosecond Laser Texturing // Journal of Micro and Nano-Manufacturing, 2017, no. 6. doi: 10.1115/1.4038093.

[24] Wang Y., Zhang J., Li K., Hu J. Surface characterization and biocompatibility of isotropic microstructure prepared by UV laser // Journal of Materials Science & Technology, 2021, no. 94, pp. 136–146.

For citing this article

Girn A.V., Rudenko M.S., Taigin V.B., Mikheev A.E., Ravodina D.V. The effect of laser surface treatment of titanium samples on the adhesive strength of adhesive joints // Spacecrafts & Technologies, 2022, vol. 6, no. 2, pp. 90-101. doi: 10.26732/

Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).