№3 2022


Analysis of mechanical properties of spatial truss structures sections


S.A. Zommer, A.P. Kravchunovsky


JSC «Academician M. F. Reshetnev» Information Satellite Systems»
Zheleznogorsk, Krasnoyarsk region, Russian Federation


The paper presents the results of computational study of sections of spatial truss structures. They can form large supporting structures on spacecraft to place onboard equipment. The calculations were carried out by the finite element method in FEMAP with Nastran. The chosen section, the object of study, is a set of straight rods rigidly connected at the nodes in such a way that the cross section of the truss structure is a triangle. Calculation models, procedures for calculation and results analysis are presented. The purpose of the calculation is to determine how the relative position of the rods in the structural scheme affects the mechanical properties of the structure. The main criterion for strength estimating was the magnitude of the stresses derived by load. Stiffness was determined by the value of the first natural frequency. The sequential addition of rods and varying their connection allow modifying the structural schemes of truss structures. Next, the mechanical properties of the structure which effected by made modifications were evaluated again. Thus, six structural schemes of sections of the truss structure, obtained from the results of the study, have been developed. At the same time, the mass of the section, its shape and dimensions, the material and shape of the rods section as well as the initial and boundary conditions, remained unchanged. Based on the results of the analysis, someone can notice that each structure has unique mechanical characteristics. Thus, the paper gives recommendations for choosing a specific structural scheme of the section, depending on the required operating conditions and acceptable manufacturing technology. So, the criteria for choosing one of the above various sections of a truss structure or the principle of its building can be the complexity of manufacturing, maximum stiffness and strength, or minimum displacement. Structural schemes of sections with the highest strength and capability have been selected for use as part of spatial truss rods of spacecraft.


truss structure, bar system, mechanical analysis, stiffness, strength, spacecraft


[1] Chebotarev V. E., Kosenko V. E. Osnovy proektirovaniya kosmicheskikh apparatov informatsionnogo obespecheniya [Fundamentals of spacecraft design information support]. Krasnoyarsk, SibGAU Publ., 2011, 488 p. (In Russian)

[2] Chernomaz V. I., Svishchev V. V., Doronin A. V., Goncharov K. A., Moisheev A. A. Silovoj karkas dlya kosmicheskoj [Power frame for space equipment]. Patent RU 2610070, 2017, bulletin no. 14.

[3] Shaida A. N., Stratilatov N. R., Kirilin A. N., Akhmetov R. N., Maksimov S. V. Silovaya ferma kosmicheskogo teleskopa [Space Telescope Power Farm]. Patent RU 2417389, 2011, bulletin no. 12.

[4] Malkov I. V. Nauchnye osnovy tekhnologii formoobrazovaniya namotkoj ugleplastikovyh elementov fermennyh konstrukcij kosmicheskih apparatov [Scientific bases of the technology of shaping by winding carbon-fiber elements of spacecraft truss structures]. Abstract of Doc. tech. science, Moscow, 2001, 32 p. (In Russian)

[5] Bitkin V. E., Zhidkova O. G., Denisov A. V., Borodavkin A. V., Mityushkina D. V. Proektirovanie razmerostabil'noj nesushchej konstrukcii korpusa optiko-elektronnogo modulya iz ugleplastika dlya kosmicheskogo apparata [Designing a dimensionally stable load-bearing structure of the body of an optical-electronic module made of carbon fiber for a spacecraft] // Proc. of the Samara Scientific Center of the Russian Academy of Sciences, 2016, vol. 18, no. 4–3, pp. 571–577. (In Russian)

[6] Chiras A. A. Stroitel'naya mekhanika: teoriya i algoritmy [Structural mechanics: theory and algorithms]. Moscow, Stroyizdat, 1989, 255 p. (In Russian)

[7] Gnezdilov V. A. Prostranstvennaya konstrukciya [Spatial structure]. Patent RU 2515487, 2014, bulletin no. 13.

[8] Netaliev O. A. Prostranstvennaya konstrukciya-struktura povyshennoj sejsmostojkosti [Spatial construction-structure of increased seismic resistance]. Patent RU 2466245, 2012, bulletin no. 31.

[9] Sedova N. M., Ryzhkov A. A., Kotov I. A., Ulrik S. A. Trekhmernaya fermennaya struktura bashennogo tipa [Threedimensional truss structure tower type]. Patent RU 2347048, 2009, bulletin no. 5.

[10] Grunin E. P., Shikera V. V. Fermennaya trubchataya konstrukciya [Truss tubular structure]. Patent RU 10676, 1999.

[11] Segerlind L. Primenenie metoda konechnyh elementov [Application of the finite element method]. Moscow, Mir, 1979, 392 p. (In Russian)

[12] Rychkov S. P. Modelirovanie konstrukcij v srede Femap with NX Nastran [Structural modeling in Femap with NX Nastran]. Moscow, Mir, 2013, 784 p. (In Russian)

[13] Seliverstov G. V., Shpachenko E. N. Analiz fermennoj konstrukcii koncevoj balki gruzovoj telezhki mostovogo krana [Analysis of the truss structure of the end beam of the cargo trolley of an overhead crane] // Construction and road machines, 2020, no. 10, pp. 30–33. (In Russian)

[14] Coj D. Ch., Chebrovsky A. A. Analiz zarubezhnogo opyta issledovanij stal'nyh fermennyh konstrukcij [Analysis of foreign experience in the study of steel truss structures] // Proc. of the 60th student scientific and technical conference of the Civil Engineering Institute of the TOGU, Khabarovsk, 2020, pp. 429–437. (In Russian)

[15] Tin'kov D. V. Sravnitel'nyj analiz analiticheskih reshenij zadachi o progibe fermennyh konstrukcij [Comparative analysis of analytical solutions of the problem of deflection of truss structures] // Magazine of Civil Engineering, 2015, no. 5 (57), pp. 66–73. doi: 10.5862/MCE.57.6. (In Russian)

[16] Valiullin D. A., Chizhov S. V. Sravnitel'nyj analiz raschetnyh modelej skvoznyh proletnyh stroenij metallicheskih mostov [Comparative analysis of design models of through span structures of metal bridges] // Travel navigator, 2020, no. 42 (68), pp. 42–49. (In Russian)

[17] Bhowmik Er. Ch., Chakraborti P. Analytical and Experimental Modal Analysis of Electrical Transmission Tower to Study the Dynamic Characteristics and Behaviors // KSCE Journal of Civil Engineering, 2020, pp. 931–942. doi: 10.1007/s12205-020-1563-3.

[18] Kirsanov M. N. Analiticheskoe issledovanie zhestkosti prostranstvennoj staticheski opredelimoj fermy [Analytical study of the rigidity of a spatial statically determinate truss] // Vestnik MGSU, 2017, vol. 12, no. 2 (101), pp. 165–171. doi: 10.22227/1997-0935.2017.2.165-171. (In Russian)

[19] Kirsanov M. N. Izgib, kruchenie i asimptoticheskij analiz prostranstvennoj sterzhnevoj konsoli [Bending, torsion and asymptotic analysis of the spatial rod console] // Magazine of Civil Engineering, 2014, no. 5 (49), pp. 37–43. doi: 10.5862/MCE.49.4. (In Russian)

[20] Abdullin I. N. Modelirovanie fermennogo zapolnitelya tryohslojnoj konstrukcii [Modeling of a three-layer truss filler] // International Scientific and Practical Conference «Search for effective solutions in the process of creating and implementing scientific developments in the Russian aviation and rocket and space industry», Kazan, 2014, pp. 307–311. (In Russian)

[21] Domanov E. V. Analiticheskaya zavisimost' progiba prostranstvennoj konsoli treugol'nogo profilya ot chisla panelej [Analytical dependence of the deflection of the spatial console of a triangular profile on the number of panels] // Scientific almanac, 2016, no. 6–2 (19), pp. 214–217. doi: 10.17117/na.2016.06.02.214. (In Russian)

[22] Kirsanov M. N. Analiz progiba fermy prostranstvennogo pokrytiya s krestoobraznoj reshetkoj [Analysis of the buckling of spatial truss with cross lattice] // Magazine of Civil Engineering, 2016, no. 4 (64), pp. 52–58. doi: 10.5862/MCE.64.5.

[23] Testoedov N. A., Lysenko E. A. Eksperimental'naya otrabotka kosmicheskih apparatov na mekhanicheskie vozdejstviya [Experimental testing of spacecraft for mechanical effects] // Krasnoyarsk, Siberian State Aerospace University, 2007. (In Russian)

[24] Patraev V. E., Halimanovich V. I., Il'inyh V. V. Nadezhnost' kosmicheskih apparatov [Reliability of spacecraft] // Krasnoyarsk, Siberian State Aerospace University, 2009. (In Russian)

[25] Stolyarchuk V. A. Avtomatizaciya proektirovaniya silovyh konstrukcij [Automation of the design of power structures]. Moscow, MAI Publishing House, 2004, 87 p. (In Russian)

[26] Marutyan A. S. Optimizaciya fermennyh konstrukcij s poyasami regulyarno-peremennyh sechenij iz pryamougol'nyh trub [Optimization of truss structures with belts of regular-variable sections from rectangular pipes] // Structural Mechanics and Analysis of Constructions, 2020, no. 6 (293), pp. 69–76. doi: 10.37538/0039-2383.2020.6.69.76. (In Russian)

[27] Kirsanov M. N. Geneticheskij algoritm optimizacii sterzhnevyh system [Genetic algorithm for optimization of rod systems] // Construction mechanics and calculation of structures, 2010, no. 2 (229), pp. 60–63. (In Russian)

[28] Peleshko I. D. Optimal'noe proektirovanie metallicheskih konstrukcij na sovremennom etape (obzor rabot) [Optimal design of metal structures at the present stage (review of works)] // Metal structures, 2009, vol. 15, no. 1, pp. 13–21. (In Russian)

For citing this article

Zommer S.A., Kravchunovsky A.P. Analysis of mechanical properties of spatial truss structures sections // Spacecrafts & Technologies, 2022, vol. 6, no. 3, pp. 172-185. doi: 10.26732/

Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).