№4 2022


Local phase center hodograph of radiating element’s navigation antenna Glonass


1N.V. Morozov, 2Yu.I. Choni, 1I.Yu. Danilov


1JSC «Academician M. F. Reshetnev» Information Satellite Systems»
Zheleznogorsk, Krasnoyarsk region, Russian Federation
2Kazan National Research Technical University named after A. N. Tupolev – KAI
Kazan, Republic of Tatarstan, Russian Federation


The main methods for the determination of the object position using code phase and signal carrier phase measurements are given. An accuracy of pseudorange measurements of both carrier phase and group delay code signal depends on local phase center variations for the signals coming from different directions. The relation of group delay and local phase center of the antenna is determined wherein the key factor is frequency dependence of phase or local phase center variation in solid angle of the radiation pattern. The definition of local phase center whose coordinates depends on the direction of radio signal is given. The single helical antenna analysis of local phase center position is carried out considering that the radio technical performances of the navigation antenna’s spacecraft «Glonass» depends on the same ones of its radiating elements. The features and the technique for hodographs computation of the helical radiator’s navigation phased antenna array using electrodynamic simulation tools are considered. The offset estimation of local phase center is obtained. The features of that offset in relation to the radiator construction depending on the operating frequency are detected.


local phase center, group delay, phase pattern, hodograph of local phase center


[1] Chen X., Parini C. G., Collins B., Yao Yu., Rehman M. U. Antennas for global navigation satellite systems. 2012, 218 p.

[2] Choni Yu. I. Hodograph of Antenna’s Local Phase Center: Computation and Analysis // IEEE Transactions on Antennas and Propagation, vol. 63, no. 6, pp. 2819–2823. doi: 10.1109/TAP.2015.2417894.

[3] Beer S., Wanninger L., Hebelbarth A. Galileo and GLONASS group delay variations // GPS Solutions, 2020, vol. 24, no. 23. doi: 10.1007/s10291-019-0939-7.

[4] Volpert A. R. O fazovom centre antenny [About phase center of antenna] // Radiotehnika, 1961, vol. 16, no. 3, pp. 3–12. (In Russian)

[5] Markov G. T., Sazonov D. M. Antenny [Antennas]. Moscow, Energiya, 1975, 528 p. (In Russian)

[6] Sander S., Cheng D. Phase center of helical beam antennas // 1958 IRE International Convention Record, 1958, pp. 152–157. doi: 10.1109/IRECON.1958.1150710.

[7] Interfejsnyj kontrolnyj document [Interface control document]. Available at: (accessed 28.09.2022). (In Russian)

[8] Kraus J. D. The Helical Antenna // Proceedings of the IRE, 1949, vol. 37, issue 3, pp. 263–272. doi: 10.1109/JRPROC.1949.231279.

[9] Ludwig A. The definition of cross polarization // IEEE Transactions on Antennas and Propagation, 1973, vol. 21, issue 1, pp. 116–119. doi: 10.1109/TAP.1973.1140406.

[10] Spherical coordinate systems for defining directions and polarization components in antenna measurements. Available at: (accessed 28.09.2022).

For citing this article

Morozov N.V., Choni Yu.I., Danilov I.Yu. Local phase center hodograph of radiating element’s navigation antenna Glonass // Spacecrafts & Technologies, 2022, vol. 6, no. 4, pp. 279-286. doi: 10.26732/

Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).