Article
Cover
Title
Methodology of estimation the parameters permissible values of the aerodynamic and inertial asymmetry of the martian probeAuthor
I. BakryOrganization
Samara National Research UniversitySamara, Russian Federation
Abstract
A technique for estimating small permissible values of the parameters of the aerodynamic and inertial asymmetry of an unguided space probe in the rarefied layers of the Martian atmosphere is considered. The desired estimate is presented as a region on the plane of asymmetry parameters. It is assumed that the spatial angle of attack during descent in the Martian atmosphere of the space probe takes small values. In this work, the region of admissible values of the asymmetry parameters of the space probe is determined, which ensures a non-resonant uncontrolled descent in the Martian atmosphere. In this case, the maximum values of the small aerodynamic and small inertial asymmetries of the space probe are calculated, at which its angular velocity does not reach resonance values. An algorithm is proposed for determining the region of admissible values of space probe asymmetry parameters, which ensures non-resonant motion in the Martian atmosphere. The results of numerical simulation confirm the reliability of the restrictions determined using the proposed method and imposed on the region of permissible values of the parameters of aerodynamic and inertial asymmetries.Keywords
aerodynamic asymmetry, inertial asymmetry, generalized parameter, estimation of parameter values, non-resonant motion, Martian atmosphereReferences
[1] Curiosity Rover. Available at: https://www.jpl.nasa.gov/missions/mars-science-laboratory-curiosity-rover-msl (accessed 01.11.2022)
[2] Robotic exploration of Mars. Available at: https://exploration.esa.int/web/mars/ (accessed 01.11.2022)
[3] Aerospace vehicle Schiaparelli: The ExoMars entry, descent and landing module. Available at: https://exploration.esa.int/web/mars/-/47852-entry-descent-and-landing-demonstrator-module (accessed 02.11.2022)
[4] Every mission to Mars ever. Available at: https://www.planetary.org/space-missions/every-mars-mission (accessed 03.11.2022)
[5] Douglas I., Franklin O. D., Diane A., John G. W., George D. Mars Polar lander. USA, National Aeronautics and Space Administration, 1998, 65 p.
[6] Aslanov V. S., Ledkov A. S. Vybor formy KA, prednaznachennogo dlya spuska v razrezhennoj atmosfere Marsa [Choosing the shape of a spacecraft designed for descent in the rarefied atmosphere of Mars] // Bulletin of the Samara State Aerospace University named after Academician S. P. Korolev, 2008, vol. 7, no. 1 (14), pp. 9–15. (In Russian)
[7] Telitsyn V. A., Zhuravlev E. I. Analiz segmental'no-konicheskih form spuskaemyh apparatov [Analysis of segmental conical shapes of descent vehicles] // Youth Scientific and Technical Bulletin, 2015, no. 12. (In Russian)
[8] Kurkina E. V. Acceptable range parameters of asymmetry of spacecraft descending in the Martian atmosphere // Institute of Physics. Conference Series: Materials Science and Engineering, 2020, vol. 868. doi: 10.1088/1757-899X/868/1/012036.
[9] Lyubimov V. V. Vneshnyaya ustojchivost' rezonansov v dinamike poleta kosmicheskih apparatov s maloj asimmetriej [External stability of resonances in the dynamics of spacecraft flight with small asymmetry]. Samara, SSC RAS, 2013, 276 p. (In Russian)
[10] Lyubimov V. V. Numerical simulation of the resonance effect during reentry into the atmosphere of a rigid body with low inertial and low aerodynamic asymmetries // Proceedings of ITNT-2015, Samara, 2015, pp. 198–210.
[11] Lashin V. S. Metodika ocenki parametrov asimmetrii pri proektirovanii spuskaemogo KA [Methodology for estimating the parameters of asymmetry in the design of the descent spacecraft] // Aerospace MAI Journal, 2020, vol. 27, no. 1, pp. 100–107. doi: 10.34759/vst-2020-1-100-107. (In Russian)
[12] Lubimov V. V., Lashin V. S. External stability of a resonance during the descent of a spacecraft with a small variable asymmetry in the martian atmosphere // Advances in Space Research Journal, 2017, vol. 59, issue 6, pp. 1607–1613. doi: 10.1016/j.asr.2016.12.039.
[13] Lashin V. S., Lyubimov V. V. Issledovanie ustojchivosti ugla ataki pri spuske KA V atmosfere Marsa s maloj asimmetriej [Investigation of the stability of the angle of attack during the descent of a spacecraft in the Martian atmosphere with a small asymmetry] // Mekhatronika, Avtomatizatsiya, Upravlenie, 2018, vol. 19, no. 5, pp. 355–359. doi: 10.17587/mau.19.355-359. (In Russian)
[14] Zabolotnov Yu. M., Lyubimov V. V. Vtorichnyj rezonansnyj effekt pri dvizhenii kosmicheskogo apparata v atmosfere [Secondary resonance effect during spacecraft movement in the atmosphere] // Space research, 1998, vol. 36, no. 2, P. 214. (In Russian)
[15] Bakry I., Lyubimov V. V. Application of the dynamic programming method to ensure of dual-channel optimal attitude control of an asymmetric spacecraft in a rarefied of atmosphere of Mars // Aerospace Systems, vol. 5, issue 2, pp. 213–221. doi: 10.1007/s42401-021-00112-y.
[16] Elkin K. S., Kushchev V. N., Manko A. S., Mikhailov V. M. Raschet vhoda v atmosferu Marsa desantnogo modulya proekta EkzoMars [Calculation of the entry into the Martian atmosphere of the landing module of the ExoMars project] // Aerospace MAI Journal, 2014, vol. 21, no. 4, pp. 79–86. (In Russian)
[17] Yaroshevsky V. A. Dvizhenie neupravlyaemogo tela v atmosfere [Movement of the uncontrolled bodies in the atmosphere]. Moscow, Mechanical engineering, 1978, 168 p. (In Russian)
[18] Bakri I. Priblizhyonno-optimal'nyj diskretnyj zakon upravleniya spuskom kosmicheskogo apparata s asimmetriej v atmosfere Marsa [Approximate optimal discrete law of spacecraft descent control with asymmetry in the Martian atmosphere] // Aerospace MAI Journal, 2022, vol. 29, no. 2, pp. 179–188. doi: 10.34759/vst-2022-2-179-188. (In Russian)
For citing this article
Bakry I. Methodology of estimation the parameters permissible values of the aerodynamic and inertial asymmetry of the martian probe // Spacecrafts & Technologies, 2023, vol. 7, no. 1, pp. 17-23. doi: 10.26732/j.st.2023.1.02
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).