Article


Cover

№1 2023

Title

Features of creating a system of simultaneous built-in testing of deformation and temperature of composite structures by fiber-optic sensors

Author

M.Yu. Fedotov

Organization

Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences
Novosibirsk, Russian Federation

Abstract

This article describes the relevance of improving existing and creating new effective methods of non-destructive testing and technical diagnostics of highly loaded aircraft structures made of polymer composite materials to ensure safe operation. Approaches to the creation of efficient systems for the simultaneous embedded testing of deformations and temperature of structures made of polymer composite materials by an optical method using embedded fiber-optic sensors based on fiber Bragg gratings are considered. The world experience in creating such systems, the methodology of non-destructive testing are analyzed, taking into account the creation of a spatial topology of fiber-optic sensors in a real product. It is shown that to solve this problem, it is most expedient to use the method of two optical fibers with different sensitivity to deformation and temperature, or to one of these parameters. The results of experimental studies on the simultaneous control by the proposed method of deformation and temperature of a structurally similar sample from a carbon composite processed by a vacuum method from a prepreg are presented. It has been established that the use of a quadratic model for optical control of structurally similar samples of carbon composite makes it possible to increase the accuracy of deformation and temperature measurements in comparison with the linear control model. It is confirmed that the proposed experimental technique allows for simultaneous control of deformation and temperature of structurally similar samples from carbon composites, while it can be adjusted and adapted to the actual operating conditions of a particular structure.

Keywords

simultaneous embedded testing system, polymer composite material, structurally similar sample, spatial topology, fiber-optic sensor, fiber Bragg grating, measurement accuracy

References

[1] Kokarev A. S., Ptushkin A. I., Marchenko M. A. Obespechenie bezopasnosti kosmicheskoj deyatel'nosti NASA [Ensuring the safety of NASA space activities] // Information and Space, 2016, no. 4, pp. 172–180. (In Russian)

[2] Kovtunov S. S., Nasonov F. A. Razrabotka materiala PKM so sverhmaloj koncentraciej OUNT s cel'yu povysheniya ustalostnyh harakteristik dlya primeneniya v sverhzvukovom passazhirskom samolete novogo pokoleniya [Development of a PCM material with an ultra-low SWCNT concentration in order to improve fatigue characteristics for use in a new generation supersonic passenger aircraft] // Theses of the I International scientific-technical conference «Skorostnoj transport budushchego: perspektivy, problemy, resheniya», Moscow, 2022, pp. 56–58. (In Russian)

[3] Gunyaeva A. G., Kurnosov A. O., Gulyaev I. N. Vysokotemperaturnye polimernye kompozicionnye materialy, razrabotannye vo FGUP «VIAM», dlya aviacionno-kosmicheskoj tekhniki: proshloe, nastoyashchee, budushchee (obzor) [High-temperature polymer composite materials developed FSUE «VIAM» for aerospace engineering: past, present and future (review)] // Proceedings of VIAM, 2021, no. 1 (95), pp. 43–53. doi: 10.18577/2307-6046-2021-0-1-43-53. (In Russian)

[4] Kozelskaya S. O., Akimov D. A., Andreev A. S., Budadin O. N., Kotelnikov V. V. Primenenie glubinnyh nejronnyh setej na osnove pallitivnogo analiza v usloviyah nepolnoj informacii optiko-teplovogo i elektricheskogo nerazrushayushchego kontrolya dlya prognozirovaniya predel'nogo resursa ekspluatacii konstrukcij iz kompozitnyh materialov [Application of deep neural networks based on palliative analysis under conditions of incomplete information of optical thermal and electric nondestructive testing for prediction of the limit resource of operation of construction] // Testing. Diagnostics, 2021, vol. 24, no. 3 (273), pp. 4–15. doi: 10.14489/td.2021.03.pp.004-015. (In Russian)

[5] Zhelezina G. F., Sivakov D. V., Gulyaev I. N. Vstroennyj kontrol': ot datchikov do informkompozitov [Built-in control: from sensors to information composites] // Aviation Industry, 2008, no. 3, pp. 46–50. (In Russian)

[6] Khabarov S. S., Komshin A. S. Primenenie volokonno-opticheskoj izmeritel'noj tekhnologii i fazohronometricheskogo metoda dlya kontrolya i monitoringa tekhnicheskogo sostoyaniya konstrukcij letatel'nyh apparatov [Application of fiber-optic measuring technology and phase-chronometric method for control and monitoring of technical condition of aircraft structures] // Measurement Techniques, 2021, no. 2, pp. 49–56. doi: 10.32446/0368-1025it.2021-2-49-56. (In Russian)

[7] Aniskovich V. A., Budadin O. N., Zaikina N. L., Kutyurin V. Yu., Mukhanova T. A., Razin A. F., Solovei A. V., Vodopyanov V. A. Izmerenie deformacij s ispol'zovaniem volokonno-opticheskih datchikov v processe prochnostnyh ispytanij anizogridnyh konstrukcij iz kompozicionnyh materialov [Measurement of strains using fiber-optic sensors during strength testing of anisogrid composite structures] // Testing. Diagnostics, 2018, no. 7, pp. 44–49. doi: 10.14489/td.2018.07.pp.044-049. (In Russian)

[8] Svirskiy Yu. A., Trunin Yu. P., Pankov A. V., Zaytsev M. D., Fagalov V. F. Bortovye sistemy monitoringa (BSM) i perspektivy primeneniya v nih volokonno-opticheskih datchikov [Health monitoring systems (HMS) and perspectives to use fiber bragg strain gages in HMS] // Composites and nanostructures, 2017, vol. 9, no. 1 (33), pp. 35–44. (In Russian)

[9] Bautin A. A., Svirsky Yu. A., Pankov A. V., Voronkov R. V. Sposoby primeneniya volokonno-opticheskih datchikov deformacij v sistemah monitoringa [Methods of using fiber Bragg grating strain sensors in monitoring systems] // Applied photonics, 2018, vol. 5, no. 4, pp. 391–407. doi: 10.15593/2411-4367/2018.4.07. (In Russian)

[10] Kinet D., Megret P., Goossen K. W., Liang Q., Heider D., Caucheteur Ch. Fiber bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions // Sensors, 2014, vol. 14, no. 4, pp. 7394–7419. doi: 10.3390/s140407394.

[11] Bado M. F., Casas J. R. A Review of Recent Distributed Optical Fiber Sensors Applications for Civil Engineering Structural Health Monitoring // Sensors, 2021, vol. 21, no. 5. doi: 10.3390/s21051818.

[12] Frazao O., Melo M., Marques P. V. S., Santos J. L. Chirped Bragg grating fabricated in fused fibre taper for strain–temperature discrimination // Measurement Science and Technology, 2005, vol. 16, no. 4, pp. 984–988. doi: 10.1088/0957-0233/16/4/010.

[13] Chehura E., James S. W., Tatam R. P. Temperature and strain discrimination using a single tilted fibre Bragg grating // Optics Communications, 2007, vol. 275, issue 2, pp. 344–347. doi: 10.1016/J.OPTCOM.2007.03.043.

[14] Guan B. O., Tam H. Y., Tao X. M., Dong X. Y. Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating // IEEE Photonics Technology Letters, 2000, vol. 12, no. 6, pp. 675–677.

[15] Demirel M., Robert L., Molimard J., Vautrin A., Orteu J.-J. Strain and Temperature Discrimination and Measurement Using Superimposed Fiber Bragg Grating Sensor // Proceedings of the international conference «Experimental Analysis of Nano and Engineering Materials and Structures», 2007, pp. 639–640. doi: 10.1007/978-1-4020-6239-1_317.

[16] Wu C., Zhang Y., Guan B.-O. Simultaneous measurement of temperature and hydrostatic pressure using Bragg gratings in standard and grapefruit microstructured fibers // IEEE Sensors Journal, 2011, vol. 11, no. 2. pp. 489–492. doi: 10.1109/JSEN.2010.2068045.

[17] Sivanesan P., Sirkis J. S., Murata Yo., Buckley S. G. Optimal wavelength pair selection and accuracy analysis of dual fiber grating sensors for simultaneously measuring strain and temperature // Optical Engineering, 2002, vol. 41, no. 10, pp. 2456–2463. doi: 10.1364/AO.47.001668.

[18] Kogelnik H. Theory of optical-waveguides in guided wave optoelectronics; Part of the Springer Series in Electronics and Photonics book series (SSEP). Springer-Verlag, Berlin. 1988. vol. 26. pp. 7–88.

[19] Fedotov M. Yu., Budadin O. N., Kozel'skaya S. O. Matematicheskoe modelirovanie i eksperimental'nye rezul'taty kontrolya PKM volokonno-opticheskimi datchikami s uchetom vozdejstviya faktorov, imitiruyushchih real'nye usloviya ekspluatacii [Mathematical modeling and experimental results of control of pcm by fiber-optic sensors taking into account the influence of factors simulating real operating conditions] // Testing. Diagnostics, 2019, no. 4, pp. 12–19. doi: 10.14489/td.2019.04.pp.012-019. (In Russian)

[20] Fedotov M. Yu., Goncharov V. A., Shienok A. M., Sorokin K. V. Issledovanie izgibnyh deformacij ugleplastika optovolokonnymi sensorami na breggovskih reshetkah [Investigation of bending deformations of carbon fiber with fiber-optic sensors on Bragg gratings] // Voprosy materialovedeniya, 2013, no. 2 (74), pp. 139–147. (In Russian)

[21] Kalli K., Simpson A. G., Zhou K., Zhang L., Bennion, I. Tailoring the temperature and strain coefficients of Type I and Type IA dual grating sensors – the impact of hydrogenation conditions // Measurement Science and Technology, 2006, vol. 17, no. 5, P. 949. doi: 10.1088/0957-0233/17/5/S02.

[22] Haran F. M., Rew J. K., Foote P. D. A Fiber Bragg grating strain gauge rosette with temperature compensation // Proceedings of the SPIE, 1998, vol. 3330, pp. 220–230. doi: 10.1117/12.316977.

[23] Budadin O., Vavilov V., Fedotov M., Vasiliev S., Gnusin P., Kozelskaya S., Kuimova M. Theoretical and Experimental Studies of Structural Health Monitoring of Carbon Composites with Integrated Optical Fiber Sensors Based on Fiber Bragg Gratings // Journal of Nondestructive Evaluation, 2021, vol. 40, no. 4. doi: 10.1007/s10921-021-00822-5.

[24] Shishkin V. V., Terentyev V. S., Kharenko D. S., Dostovalov A. V., Wolf A. A., Simonov V. A., Fedotov M. Yu., Shienok A. M., Shelemba I. S., Babin S. A. Experimental method of temperature and strain discrimination in polymer composite material by embedded fiber-optic sensors based on femtosecond-inscribed FBGs // Journal of Sensors, 2016, vol. 2016. doi: 10.1155/2016/3230968.



For citing this article

Fedotov M.Yu. Features of creating a system of simultaneous built-in testing of deformation and temperature of composite structures by fiber-optic sensors // Spacecrafts & Technologies, 2023, vol. 7, no. 1, pp. 24-34. doi: 10.26732/j.st.2023.1.03


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).