Article


Cover

№2 2023

Title

Increasing the static and dynamic accuracy of the parallel structure mechanism for space application

Authors

S.A. Matveev, N.S. Slobodzyan, A.A. Kiselev, Yu.A. Zhukov, E.B. Korotkov

Organization

Baltic State Technical University «VOENMEH» named after D. F. Ustinov
Saint Petersburg, Russian Federation

Abstract

The article considers the control system of a parallel structure mechatronic device for space application such as a hexapod (Stewart platform). The solution of the inverse problem of kinematics is described and the necessity of solving the direct problem of kinematics by numerical methods is substantiated. During the research, it was revealed that the main source of positioning errors of the hexapod without the main feedback is its linear drives, which have systematic errors in the mechanical part of the linear transmission, gearbox, in the location of the motor windings; temperature errors due to changes in the dimensions of parts due to heating or cooling; errors caused by elastic deformations under load. To improve the static accuracy of the hexapod, a number of both design and software solutions are proposed: mechanical transmission preload, individual calibration of each drive, compensation for thermal expansion, etc. To improve the dynamic accuracy, it is proposed to use the method of controlling linear drives in the servo mode along with ensuring the trajectory of the platform with the limitation of the speed of its movement and derivatives of the speed. The use of these methods makes it possible to significantly improve the accuracy of the operation of the mechanisms of a parallel structure and, thereby, to approach the achievement of the limiting qualitative properties of onboard optical-electronic and information systems of spacecraft and stations.

Keywords

parallel structure mechanism, hexapod, Stewart platform, static accuracy, dynamic accuracy, error, error compensation, trajectory control

References

[1] Testoedov N. A. Sibirskij centr rossijskogo sputnikostroeniya [Siberian Centre of Russian satellite designing] // Journal of Siberian Federal University. Technics and technology, 2012, no. 2, pp. 126–139. (In Russian)

[2] Kosmicheskaya observatoriya «Millimetron» [Space Observatory «Millimetron»]. Available at: http://millimetron.ru (accessed 01.03.2023). (In Russian)

[3] Lightsey P., Atkinson Ch., Clampin M., Feinberg L. James Webb Space Telescope: Large deployable cryogenic telescope in space // Optical Engineering, 2012, vol. 51, issue 1, 011003. doi: 10.1117/1.OE.51.1.011003.

[4] Zhukov Yu. A., Lychagin Yu. V., Slobodzyan N. S. Reshenie zadach kinematiki geksapoda v real'nom vremeni [Realtime solution of hexapod kinematics problems] // Materials of the III All-Russian scientific and technical conference of young scientists, graduate students and students, 2017, pp. 87–91. (In Russian)

[5] Sayapin S. N., Artemenko Y. N. Intelligence System for Active Vibration Isolation and Pointing of UltrahighPrecision Large Space Structures in Real Time. Springer International Publishing, pp. 103–115.

[6] Dorofeeva E. S., Mirzaev R. A., Smirnov N. A. Mekhanizmy orientacii antenn kosmicheskih apparatov [Mechanisms for orientation of spacecraft antennas] // Materials of the conference «Actual problems of aviation and astronautics», 2014, vol. 1, no. 10, pp. 83–84. (In Russian)

[7] Kong Y., Huang H. Vibration isolation and dual-stage actuation pointing system for space precision payloads // Acta Astronautica, 2018, vol. 143, pp. 183–192. doi: 10.1016/j.actaastro.2017.11.038.

[8] Dzhukich D. Y., Zhukov Yu. A., Korotkov E. B., Moroz A. V., Slobodzyan N. S. Cifrovoe upravlenie geksapodom na osnove obratnoj modeli dinamiki s realizaciej na radiacionno stojkom ARM-mikrokontrollere [Digital control of a hexapod based on an inverse dynamics model with implementation on a radiation-resistant ARM microcontroller] // Voprosy radioelektroniki, 2018, no. 7, pp. 103–110. (In Russian)

[9] Zhukov Yu. A., Korotkov E. B., Slobodzyan N. S., Yakovenko N. G. Ocenka resheniya zadach kinematiki v sisteme upravleniya mekhanizmom s parallel'noj kinematikoj kosmicheskogo primeneniya na baze geksapoda [Evaluation of the solution of kinematics problems in the control system of a mechanism with parallel kinematics of space application based on a hexapod] // Defense Engineering, 2017, no. 9, pp. 29–37. (In Russian)

[10] Dietmaier. The Stewart-Gough Platform of General Geometry can have 40 Real Postures // Journal of Mechanical Design, 1998, vol. 115, no. 2, pp. 277–282.

[11] International Space Station (ISS) Researcher’s Guide. Available at: https://www.nasa.gov/sites/default/files/files/NP2015-03-015-JSC_Space_Environment-ISS-Mini-Book-2015-508.pdf (дата обращения: 01.03.2023).

[12] Matveev S. A., Korotkov E. B., Slobodzyan N. S., Zhukov Yu. A., Kiselev A. A. Precizionnoe upravlenie shestistepennym mekhanizmom s parallel'noj kinematikoj kosmicheskogo naznacheniya na osnove kompensacii kinematicheskih i temperaturnyh oshibok [Precision control of a six-degree mechanism with parallel space kinematics based on kinematic and temperature error compensation] // Izv. VUZ. Aviatsionnaya Tekhnika, 2020, no. 2, pp. 12–20. (In Russian)

[13] Slobodzyan N. S. Pozicionnoe upravlenie linejnym privodom mekhatronnogo ustrojstva s parallel'noj kinematikoj [Positional control of a linear drive of a mechatronic device with parallel kinematics] // Voprosy radioelektroniki, 2020, no. 9, pp. 6–13. (In Russian)

[14] Lambrechts P., Boerlage M., Steinbuch M. Trajectory planning and feedforward design for electromechanical motion systems // Control Engineering Practice, 2005, vol. 13, no. 2, pp. 145–157.

[15] Artemenko Yu. N., Agapov V. A., Dubarenko V. V., Kuchmin A. Yu. Gruppovoe upravlenie aktuatorami kontrreflektora radioteleskopa [Group control of radio telescope counterreflector actuators] // Information and control systems, 2012, no. 4 (59), pp. 2–9. (In Russian)

[16] Zhukov Yu. A., Korotkov E. B., Moroz A. V. Kinematicheskoe upravlenie geksapodom kosmicheskogo primeneniya [Kinematic control of a hexapod for space applications] // Materials of the conference «Intelligent systems, control and mechatronics», 2018, pp. 67–71. (In Russian)

[17] Beiki M., Irani-Rahaghi M. Optimal trajectory planning of a six DOF parallel Stewart manipulator // 6th RSI International Conference on Robotics and Mechatronics (IcRoM), 2018, pp. 120–125.



For citing this article

Matveev S.A., Slobodzyan N.S., Kiselev A.A., Zhukov Yu.A., Korotkov E.B. Increasing the static and dynamic accuracy of the parallel structure mechanism for space application // Spacecrafts & Technologies, 2023, vol. 7, no. 2, pp. 116-125. doi: 10.26732/j.st.2023.2.04


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).