Article


Cover

№1 2024

Title

Nanosatellite thermal state under nonstationary heat generation from payload radio-electronic elements

Authors

S.V. Belov, A.V. Belkov, A.P. Zhukov, M.S. Pavlov, S.V. Ponomarev

Organization

Research Institute of Applied Mathematics and Mechanics of Tomsk State University
Tomsk, The Russian Federation

Abstract

The purpose of the work is to assess the thermal operating conditions of the radio-electronic components of a nanosatellite under orbital flight conditions. The following article presents the numerical research results involving the thermal state of 1U CubeSat nanosatellite in the course of its motion at low-Earth orbit (at the height of 300km) during autumnal equinox and winter solstice days. The nanosatellite numerical thermal model includes the heat rate from the Sun and Earth surface, and, at the same time, excluding atmospheric temperature rise. Moreover, nonstationary heat generation from nanosatellite payload of radio-electronic elements, as well as energy re-radiation within the nanosatellite casing itself are taken into account. The nanosatellite geometry, structure, thermal-physical material properties and free surface optical properties as well as its payload operational mode estimations are based on reliable literature references. The numerical model results indicate the fact that the radio-electronic element temperature depends on its heat generation rate output, thermal radiation of adjacent circuit boards, low-Earth orbital nanosatellite motion and its orbital position. Radio-electronic element temperature dynamics is determined by the acting heat generation regimes. Although, under conditions of the formulated problem, the temperature of most radio-electronic elements is within the acceptable operation limits, nevertheless, rapid high-level thermal load impact could result in excessive heating of the payload elements.

Keywords

nanosatellite, CubeSat, heat transfer rate, thermal radiation, orbital motion, numerical modeling

References

[1] Gansvind I. Small satellites in remote sensing of the Earth // News, Atmospheric and Oceanic Physics. 2020. Vol. 56. P. 1177–1181. // DOI: 10.1134/S0001433820090108

[2] CubeSat Design Specification Rev. 14.1 The CubeSat Program, Cal Poly SLO Available at https://www.nasa.gov/wp-content/uploads/2018/01/cubesatdesignspecificationrev14_12022–02–09.pdf. (accessed: 19.12.2023).

[3] Ablameyko S.V., Saechnikov V., Spiridonov A. Malie kosmicheskie apparati [Small spacecraft]: Minsk, BSU, 2012, 159 p.

[4] Nanosputnikovaya platforma CubeSat «OrbiCraft-Pro» [Nanosatellite platform CubeSat «OrbiCraft-Pro»] Available at https://sputnix.ru/tpl/docs/Описание%20ОрбиКрафт-Про%20(рус.).pdf (accessed: 19.12.2023).

[5] Rathinam A. Design and Development of UWE?4: Integration of Electric Propulsion Units, Structural Analysis and Orbital Heating Analysis: Thesis for Master of Science Degree. Lisboa, 2019. DOI: 10.13140/ RG.2.2.34427.72485.

[6] Reyes L.A. et al. Thermal modeling of CIIIASat nanosatellite: A tool for thermal barrier coating selection // Applied Thermal Engineering, 2020, vol. 166, pp. 114651. DOI: 10.1016/j.applthermaleng.2019.114651

[7] Yakovlev O.Y., Maligin D. External thermal modeling satellite platform «Synergy» // Spacecrafts & Technologies, 2019, vol. 29, Issue 3, pp. 155–163. DOI:10.26732/2618-7957-2019-3-155-163

[8] SobolevD.D., SimakovS.P.Thermal analysis of the nanosatellite SamSat-M // Thermal Processes in Technology, pp. 85–96. DOI: 10.34759/tpt?2021-13-2-85-96

[9] Fomin D. et al. Three-dimensional inhomogeneous thermal fields of the “Photon-Amur 2.0” payload electronic board developed for nanosatellites // VESTNIK of Samara University. Aerospace and Mechanical Engineering, 2021, vol. 20. Issue 2, pp. 74–82. DOI: 10.18287/2541-7533-2021-20-2-74-82

[10] Boltov Е.А. et al. Design of a CubeSat thermal control system for battery module // Spacecrafts & Technologies, 2022, vol. 6, Issue 1, pp. 29–37. DOI: 10.26732/j.st.2022.1.04

[11] Corpino S. et al. Thermal design and analysis of a nanosatellite in low earth orbit // Acta Astronautica, 2015, vol. 115, pp. 247–261. DOI: 10.1016/j.actaastro.2015.05.012

[12] Wang Y., Denisov O.V., Denisova L.V. Simulation of the thermal control system of nanosatellite using the loop heat pipes under the orbital flight conditions // RUDN Journal of Engineering Research, 2021, vol. 22, Issue 1, pp. 23–35. DOI: 10.22363/2312-8143-2021-22-1-23-35

[13] Belov S.V. et al. A thermal state of a small satellite at various packing density of electronic circuit boards // Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika Tomsk State University Journal of Mathematics and Mechanics, 2023, 82, pp. 66–81. DOI: 10.17223/19988621/82/6

[14] Wong H. Heat transfer for engineers. Addison-Wesley Longman Ltd. December 1, 1977.

[15] Kuznetsov G.V., Belozercev A. Numerical simulation of the temperature fields of power transistors taking into account the discontinuities of the transfer coefficients // News of Tomsk Polytechnic University. Georesources Engineering, 2005, vol. 308, Issue 1, pp. 150–154.

[16] Injenerniy spravochnik. Tablitsi DPVA.XYZ [Engineering reference book. DPVA.XYZ tables]. Available at https://dpva.xyz/Guide/GuidePhysics/GuidePhysicsHeatAndTemperature/EmmisionCoefficients/EmmisionCoefficientsTable01/ (Accessed: 19.12.2023).

[17] Davydov D. et al. Electrical power subsystem design for SamSat nanosatellite // Izv. vuzov. Priborostroenie, 2016, vol. 59, Issue 6, pp. 459–465 (in Russian). DOI: 10.17586/0021-3454-2016-59-6-459-465



For citing this article

Belov S.V., Belkov A.V., Zhukov A.P., Pavlov M.S., Ponomarev S.V. Nanosatellite thermal state under nonstationary heat generation from payload radio-electronic elements // Spacecrafts & Technologies, 2024, vol. 8, no. 1, pp. 7-16.


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).