УДК 629.7.015.4

А. В. Смотров

Центральный аэрогидродинамический институт им. проф. Н. Е. Жуковского, г. Жуковский, Московская область, Россия

СРАВНИТЕЛЬНЫЕ ЧАСТОТНЫЕ ИСПЫТАНИЯ ПОДВЕСНОГО ТОПЛИВНОГО БАКА

Результаты определения основных динамических характеристик ПТБ самолета Як-130УБС, зарегистрированных при различных уровнях заполнения бака.

Ключевые слова: подвесной топливный бак, частоты, формы, логарифмические декременты собственных колебаний.

A. V. Smotrov

Central Aerohydrodynamic Institute named after professor N. E. Zhukovsky, Zhukovsky, Moscow region, Russia

COMPARISON OF AERIAL FUEL TANK GROUND VIBRATION TESTS

This paper describes the experimental modal results and analysis of Jak-130 aerial fuel tank dynamic behavior. Tank dynamic behavior in relation to the varying volume of liquid comprise.

Key words: aerial fuel tank, eigen frequency, eigen forms, logarithmic decrement of modes

Обеспечение безопасности полетов военных самолетов от явлений аэроупругости требует решения ряда проблем, связанных с уточнением их характеристик, в том числе для получения заключения по флаттеру и проведения летных испытаний. Комплекс таких расчетно-экспериментальных исследований включает моделирование вибрационного поведения подвесных устройств, установленных на самолете. Важное место в ряду исходных данных занимают основные динамические характеристики (ДХ – частоты, формы, логарифмические декременты собственных колебаний) подвесных топливных баков (ПТБ) летательных аппаратов, а также их зависимость от уровня заполнения ПТБ – h/h_0 .

Для самолета Як-130УБС (рис. 1) на экспериментальной базе комплекса прочности ЛА ФГУП «ЦАГИ» автором совместно с В.П. Фаянцевым были определены ДХ подвесного топливного бака, установленного на подкрыльевом пилоне, который, в свою очередь, был вертикально по консольной схеме закреплен на силовом полу. При этом пилон с подвесным устройством оказывался повернутым на 180 вокруг оси ОХ относительно его положения на крыле самолета (рис. 2). Сам ПТБ был оснащен узлами крепления к подвесной системе крыла самолета и имел внутренние элементы (в частности, перегородки и устройство заправки/слива топлива).

Определение характеристик ПТБ с пилоном производилось для трех вариантов: пустой бак ($h/h_0 = 0$), бак, заполненный водой на ½ объема ($h/h_0 = 0,5$), и полностью заполненный бак ($h/h_0 = 1,0$). Для заполнения ПТБ в качестве моделирующей жидкости (нетоксичной и обладающей слабым коррозионным воздействием на конструкционные материалы бака) использовалась вода.

Экспериментальные ДХ (в диапазоне до 100 Гц) определены при частотных (резонансных) испытаниях, выполненных по штатной методике ФГУП «ЦАГИ» с использованием специализированного виброизмерительного комплекса PRODERA PRIN-85 [2].

[©] Смотров А. В., 2013

Сравнительные частотные испытания подвесного топливного бака

Рис. 1. Общий вид самолета Як-130УБС с установленными на подкрыльевых пилонах ПТБ [1]

Гармоническое возбуждение колебаний конструкций при испытаниях производилось при помощи двух электродинамических силовозбудителей PRODERA EX 220 SC (рис. 2). Усилие от силовозбудителя на объект испытаний передавалось при помощи специальной тяги с упругим шарниром.

Измерение колебаний выполнялось пьезоэлектрическими акселерометрами АНС-014-06 (масса датчика 20 г). Регистрация сигналов датчиков (в вольтах) осуществлялась в виде квадратурной ImU (•) и синфазной ReU (•) составляющих по отношению к сигналу тестового генератора. На рис. 3 представлена типовая амплитудная частотная характеристика колебаний ПТБ.

Значения логарифмического декремента колебаний 9 для зарегистрированных тонов вычислялись с применением следующих известных методов [3]:

 по относительной ширине квадратурной составляющей резонансной кривой:

$$\vartheta = \pi \cdot \frac{f_2 - f_1}{f_{\text{pes}}} = \pi \cdot \frac{\Delta f}{f_{\text{pes}}}; \tag{1}$$

 по тангенсу угла наклона синфазной составляющей резонансной кривой:

$$θ = 2π \cdot \frac{\text{Im } U}{f_{\text{pe3}}} tg\phi, \quad r \text{дe } tg\phi = \frac{\Delta f}{\Delta \text{Re } U},$$
(2)

следовательно,

$$\vartheta = 2\pi \cdot \frac{\mathrm{Im}\,U}{f_{\mathrm{pe3}}} \cdot \frac{\Delta f}{\Delta \,\mathrm{Re}\,U}.$$
(3)

При работе с виброизмерительным комплексом PRODERA PRIN-85 на резонансной частоте f_{pe3} [Гц] амплитуда вибросмещения в *i*-й точке нормировки вычислялась по формуле [4]

$$A_i = 1555 \cdot \frac{\operatorname{Im} U}{k_{\rm a} \cdot k_{\rm y} \cdot f_{\rm pes}^2} [\text{MM}], \qquad (4)$$

где $k_{\rm g}$ – коэффициент усиления датчиков; $k_{\rm y}$ – коэффициент усиления умножителя.

Построение форм колебаний осуществлялось в нормированных значениях вибросмещения с указанием в подписи к рисунку истинной амплитуды в точке нормировки A_i [мм]. Здесь же указаны значения резонансной частоты f_{pes} и возбуждающей силы P_i [кГ].

Формы резонансных колебаний ПТБ для различных уровней заполнения бака представлены на рис. 4. Условные обозначения, принятые на рис. 4, – в табл. 1.

Значения резонансных частот, величины логарифмических декрементов и наименование зарегистрированных тонов колебаний для всех вариантов испытаний сведены в табл. 2. Четыре низших тона колебаний ПТБ как твердого тела были зафиксированы для всех уровней заполнения бака (рис. 4 и 5).

Первый (низший) тон колебаний для всех вариантов заполнения бака представляет собой вращение ПТБ в боковой, горизонтальной плоскости (вокруг оси ОУ) с узлом, находящимся вблизи хвостовой части конструкции, при этом носок пилона движется совместно с баком.

Второй тон горизонтальных колебаний – вращение ПТБ вокруг оси ОУ с узлом вблизи центра тяжести ПТБ. Пилон поворачивается синфазно с баком, но угол его вращения на порядок меньше. Координаты их узлов вращений значительно различаются.

При третьем (по счету) тоне колебания ПТБ происходят в вертикальной плоскости с узлом, находящимся позади центра тяжести бака, при этом в фазе с ним подворачивается носок пилона.

Четвертый тон колебаний ПТБ в вертикальной плоскости – узел, находится вблизи центра тяжести, а пилон – практически неподвижен.

При пятом тоне колебаний составной конструкции был зарегистрирован упругий изгиб ПТБ первого тона в вертикальной плоскости при «молчащем» пилоне.

Вертикальный изгиб ПТБ второго тона (с двумя узлами) в противофазе с изгибными колебаниями пилона представляет собой шестой собственный тон колебаний подвесного устройства. Характерно, что этот собственный тон присутствует в спектре колебаний только наполовину заполненного бака. Тон генерируется в том числе и колебаниями плескающейся в баке жидкостью происходит обмен энергией между оболочкой ПТБ и водой. Отсутствие такого тона колебаний как для пустого, так и полностью заполненного бака подтверждается и расчетно-теоретическими исследованиями. Например, в [5; 6] указано, что если уровень жидкости является заданным, то соответствующая собственная частота может и не существовать.

Таблица 1

60

ИССЛЕДОВАНИЯ

Наивысшим из зарегистрированных тонов колебаний был седьмой тон – горизонтальный изгиб ПТБ первого тона (но с двумя узлами) с изгибными упругими колебаниями носка пилона.

Сравнение полученных экспериментальных данных (рис. 6, табл. 2) показывает, что, как и следовало ожидать, частоты резонансных колебаний ПТБ понижаются при заполнении бака водой. Для заданной формы колебаний (рис. 4) спектр собственных частот при разном заполнении бака изменяется дискретно.

Рис. 6 иллюстрирует изменение логарифмических декрементов низших тонов колебаний ПТБ в зависимости от заполнения бака водой. Эти экспериментальные данные свидетельствуют о том, что демпфирование колебаний ПТБ, как правило, выше у бака, заполненного водой на ½ объема. Наиболее ярко это проявляется на частотах двух первых тонов.

61

Рис. 4. Формы собственных (резонансных) колебаний ПТБ, установленного на подкрыльевом пилоне

62

Таблица	2
---------	---

Наименование тона колебаний (порядковый номер тона)		Вариант испытаний							
		$h/h_0 = 0$		$h/h_0 = 0,5$		$h/h_0 = 1,0$			
		$f_{\rm pe3},$ Гц	J	$f_{\rm pe3},$ Гц	J	$f_{\rm pe3},$ Гц	J		
Колебания по оси ОΖ									
Вращение ПТБ вокруг оси ОҮ	узел сзади (1)	16,9	0,09	10,4	0,16	4,55	0,12		
	узел спереди (2)	25,6	0,09	11,9	0,13	7,03	0,11		
Горизонтальный изгиб ПТБ в противофазе с пилоном (7)		_	_	75,5	—	43,6	0,05		
Колебания по оси ОҮ									
Вращение ПТБ вокруг оси ОZ	узел сзади (3)	30,7	0,12	14,6	0,09	8,92	0,07		
	узел спереди (4)	48,9	0,08	-	—	20,0	0,07		
Вертикальный изгиб ПТБ (5)		91,2	0,12	44,1	0,11	37,6	_		
Вертикальный изгиб ПТБ в противофазе с пилоном (6)		_	_	66,1	0,08	_	_		

колебаний в зависимости от уровня заполнения ПТБ

Логарифмический декремент колебаний цилиндрического бака, как известно [7], существенно зависит от геометрических параметров колебательной системы (наличие в ПТБ ребер, уровень заполнения его жидкостью). Значения логарифмического декремента пустого бака в основном самые малые

из рассмотренных ($\theta = 0,08-0,12$), но и они не отличаются от максимального более чем в 1,7 раза (для первого тона собственных колебаний бака, заполненного водой на 1/2 объема, $\theta = 0,16$).

Библиографические ссылки

- 1. Известия-Инновации. 2010. 30 июня. С. 11.
- Москалик Л. М., Смыслов В. И., Белов Г. А., Васильев К. И., Жаров Е. А. Расчеты и испытания на прочность. Экспериментальные методы определения частот и форм колебаний сложных пространственных конструкций в области низших собственных тонов : метод. рекомендации MP84-83. М. : ВНИИНМАШ, 1983. С. 17–26.
- Писаренко Г. С., Матвеев В. В., Яковлев А. П. Методы определения характеристик демпфирования колебаний упругих систем. Киев : Наук. думка, 1976. С. 26–43.
- Смыслов В. И. Об экспериментальных способах исследования колебаний летательных аппаратов // Труды ЦАГИ. Вып. 1217. М. : Издательский отдел ЦАГИ. 1970. С. 10–12.

- Рабинович Б. И. Колебания элементов с полостями, содержащими жидкость // Вибрации в технике : справочник : в 6 т. / ред. В. Н. Челомей. Т. 3. Колебания машин, конструкций и их элементов / под ред. Ф. М. Диментберга и К. С. Колесникова. М. : Машиностроение, 1980. С. 85–88.
- 6. Saleme E., Liber T. Breating Vibrations of Pressured Partially Filled Tanks // AIAA Journal, Vol. 3, № 1, January 1965. (См. также: Сейлем Е., Лайбер Т. Осесимметричные колебания баков, частично заполненных жидкостью под давлением // Ракетная техника и космонавтика. № 1. 1965. С. 206–211.)
- 7. Микишев Г. Н. Экспериментальные методы в динамике космических аппаратов. М. : Машиностроение, 1978. С. 52.

Статья поступила в редакцию 13.02.2013 г.