УДК 629.78

Р. В. Ельников

Московский авиационный институт (национальный исследовательский университет), г. Москва, Россия

ПРОЕКТНО-БАЛЛИСТИЧЕСКИЙ АНАЛИЗ РАЗВЕРТЫВАНИЯ ГРУППИРОВКИ СПУТНИКОВ СВЯЗИ НА ОКОЛОЛУННЫХ ОРБИТАХ

Представлены основные результаты проектно-баллистического анализа развертывания трех вариантов группировки космических аппаратов на орбитах искусственных спутников Луны для обеспечения связи между обитаемой стационарной лунной базой и различными районами лунной поверхности.

Ключевые слова: проектно-баллистический анализ, спутниковая группировка, спутники связи, окололунная орбита.

R. V. Elnikov

Moscow Aviation Institute (National Research University), Moscow, Russia

ANALYSIS OF COMMUNICATION SATELLITES CONSTELLATION DEPLOYMENT IN LUNAR ORBITS

This article describes the main results of design-analysis of communication constellation deployment in lunar orbits. Three options of constellations with a various altitude of orbits is considered. This constellation is intended to provide communication between the stationary lunar base and the various regions of the lunar surface.

Keywords: Design – ballistic analysis, constellation, communications satellites, lunar orbit.

В данной работе представлены основные результаты проектно-баллистического анализа развертывания трех вариантов группировки космических аппаратов (КА) на орбитах искусственных спутников Луны (ОИСЛ) для обеспечения глобальной оперативной связи между базовой лунной станцией и удаленными стационарными или подвижными потребителями, размещаемыми в различных районах на лунной поверхности. В первом варианте группировка состоит из 10 КА, расположенных в двух плоскостях на круговых ОИСЛ с наклонением 58° и высотой 1000 км. Во втором случае группировка состоит из 8 связных КА, расположенных в двух плоскостях на круговых ОИСЛ с наклонением 58° и высотой 1500 км. Третий вариант группировки – 6 КА в двух плоскостях на ОИСЛ с наклонением 58° и высотой 4260 км.

Рассматривалась следующая схема выведения КА на рабочие ОИСЛ:

 Ракета-носитель (РН) Союз 2.16 выводит головной блок на круговую опорную орбиту искусственного спутника Земли (ОИСЗ) с наклонением 51.8° и высотой 210 км. В состав головного блока входят межорбитальный транспортный аппарат (МТА), выполненный на основе разгонного блока (РБ) «Фрегат», и блок КА. Под МТА понимается модифицированный вариант разгонного блока с увеличенным сроком активного существования, достаточным для обеспечения перелета Земля–Луна, и спо-

[©] Ельников Р. В., 2014

собный осуществлять коррекцию перелетной траектории.

- 2. МТА обеспечивает разгонный импульс скорости ΔV₁ и переводит транспортную систему на траекторию полета к Луне.
- Астроориентация и коррекция перелетной траектории с помощью межорбитального транспортного аппарата. Предполагается одна коррекция перелетной траектории с выдачей корректирующего импульса до 70 м/с.
- 4. Выдача тормозного импульса скорости в перицентре пролетной гиперболической траектории в окрестности Луны ΔV_2 с помощью двигательной установки (ДУ) МТА. В результате этого транспортная система переходит на окололунную орбиту фазирования. Наклонение этой орбиты 58°, высота перицентра равна высоте рабочей орбиты, а эксцентриситет (вернее, отношение периодов обращений по рабочей и фазирующей орбите) выбирается в соответствии с располагаемым временем на разведение всех КА в орбитальной плоскости.
- Последовательное отделение КА от межорбитального транспортного аппарата с последующим переводом его на рабочую орбиту. Импульс скорости, который реализуется ДУ КА, на приведение его в рабочую точку обозначим ΔV₃.

В результате удается разместить космические аппараты связи в одной из рабочих плоскостей. Соответственно, для развертывания всей группировки, расположенной в двух плоскостях, потребуется два пуска PH.

Оценка энергетических затрат для перелета «опорная околоземная орбита – окололунная орбита фазирования» осуществлялась в рамках импульсной аппроксимации активных участков МТА. Первый разгонный импульс скорости ΔV_1 прикладывается коллинеарно вектору скорости в некоторой точке (характеризующейся аргументом широты u_0) опорной орбиты с долготой восходящего узла Ω_0 . Далее, численно интегрируя уравнения пассивного движения (1), строится траектория, обеспечивающая пролет Луны на некоторой высоте *H*. При этом наклонение полученной пролетной гиперболической (относительно Луны) траектории обозначим *i*.

Анализ пассивного участка движения предлагается проводить в геоцентрической экваториальной системе координат.

$$\frac{d\vec{V}}{dt} = \frac{\partial U}{\partial \vec{r}} + \sum_{j=1}^{2} \mu_{j} \left(\frac{\vec{r}_{j} - \vec{r}}{\left| \vec{r}_{j} - \vec{r} \right|^{3}} - \frac{\vec{r}_{j}}{r_{j}^{3}} \right); \qquad (1)$$

$$\frac{d\vec{r}}{dt} = \vec{V},$$

где

$$U = \frac{\mu_3}{r} - \frac{\mu_3}{3r^3} \delta \left(3\sin^2 \varphi - 1 \right); \quad \delta = 66,07 \cdot 10^3 \text{ km}^2.$$

Здесь U – гравитационный потенциал Земли как сжатого сфероида [1]; \vec{r} – радиусвектор КА относительно Земли; μ_j – гравитационный параметр *j*-го небесного тела (индексом 1 обозначено Солнце, индексом 2 – Луна, индексом 3 – Земля); \vec{r}_j – радиус-вектор *j*-го небесного тела; φ – геоцентрическая широта КА.

Таким образом, для некоторого момента времени выдачи первого импульса t_1 необходимо найти такие значения Ω_0 , u_0 и модуля импульса скорости ΔV_1 , чтобы высота пролета Луны H и наклонение пролетной гиперболы iбыли бы равны высоте и наклонению рабочей ОИСЛ соответственно.

В случае если данные условия выполнены, в перицентре пролетной гиперболы прикладывается тормозной импульс скорости ΔV_2 , обеспечивающий выход на окололунную орбиту фазирования, эксцентриситет которой e_f выбирается из условия разведения всех КА в одной орбитальной плоскости за время не больше заданного. Расчетную последовательность нахождения e_f , а также величины третьего импульса ΔV_3 представим ниже.

Окололунная орбита фазирования — это эллиптическая орбита, период обращения по которой в целое число раз (*n*) превышает период обращения по рабочей круговой ОИСЛ. Высота апоцентра орбиты фазирования больше, чем высота рабочей круговой ОИСЛ, высота перицентра равна высоте рабочей ОИСЛ.

Тормозной импульс скорости ΔV_3 , реализуемый ДУ единичного КА для приведения его в рабочую точку ОИСЛ, прикладывается в момент прохождения всего блока КА перицентра орбиты фазирования. Он может быть найден следующим образом.

Орбитальная скорость КА, находящегося на рабочей круговой ОИСЛ:

$$V = \sqrt{\frac{\mu}{r}},\tag{2}$$

33

где µ – гравитационный параметр Луны, *r* – радиус рабочей ОИСЛ.

Большая полуось орбиты фазирования может быть найдена из интеграла энергии:

 $a_{f} = \frac{-\mu}{\left(V + \Delta V_{3}\right)^{2} - \frac{2\mu}{r}}.$ (3)

Тогда период обращения по фазирующей орбите

$$T = \frac{2\pi}{\sqrt{\mu}} a_f^{\frac{3}{2}}.$$
 (4)

Угловая дальность между КА, равномерно распределенными в плоскости рабочей орбиты, может быть найдена следующим образом:

$$\varphi = \frac{2\pi}{N_{\rm KA}},\tag{5}$$

где $N_{\rm KA}$ – количество КА в орбитальной плоскости.

Тогда для обеспечения фазирования КА должно выполняться условие

$$\frac{VT}{r} - 2\pi = \frac{\varphi}{n},\tag{6}$$

где *n* – число витков, совершаемых по орбите фазирования блоком КА вместе с МТА между поочередным отделением КА.

Задав *n* и подставляя (2) – (5) в (6), получим уравнение относительно ΔV_3 . Решив его, можно с помощью (3) и (4) также найти большую полуось орбиты фазирования a_f и период обращения по фазирующей орбите *T*. Тогда время разведения всех аппаратов в орбитальной плоскости найдем следующим образом:

$$T_{\Sigma} = Tn \left(N_{\rm KA} - 1 \right). \tag{7}$$

Число витков *n* необходимо выбирать таким, чтобы суммарное время разведения КА в орбитальной плоскости не превышало допустимого.

Эксцентриситет орбиты фазирования

$$e_f = \frac{a_f - r}{a_f}.$$
 (8)

В табл. 1 представлены результаты расчета орбит фазирования для трех рассматриваемых высот рабочих ОИСЛ. В расчетах предполагалось, что суммарное время разведения всех КА в орбитальной плоскости не должно превышать десяти суток.

Для примера в табл. 2 приведены результаты расчета импульса ΔV_3 , а также суммарного времени разведения КА для различных отношений периодов обращения КА по фазирующей и рабочей орбитам.

Итак, краевая задача перелета «опорная околоземная орбита – окололунная орбита фа-

Таблица 1

Результаты расчета орбит фазирования для трех рассматриваемых высот рабочих ОИСЛ (Нонсл)

Н _{оисл} , км	N _{KA}	j	п	$\Delta V_{3},$ M/c	<i>Т</i> , мин	T_{Σ}	e_{f}
1000	5	72	16	5,507	216,89	9,64	0,008247
1500	4	90	17	5,945	279,55	9,901	0,009685
4260	3	120	10	9,723	717,80	9,969	0,021623

Таблица 2

Импульс $\Delta V3$, и суммарное время разведения КА TS

	Вариант группировки КА							
n	$H_{\rm OHCJI} = 1000$ км, $N_{\rm KA} = 5$		<i>H</i> _{ОИСЛ} = 150	0 км, $N_{\rm KA} = 4$	$H_{\rm OHCJI} = 4260$ км, $N_{\rm KA} = 3$			
	$\Delta V_{3},$ M/C	T_{Σ}	$\Delta V_{3},$ M/C	T_{Σ}	$\Delta V_{3},$ M/C	T_{Σ}		
1	74,509	0,714	82,298	0,717	75,723	1,286		
2	40,579	1,309	45,621	1,291	43,122	2,251		
4	21,246	2,499	24,136	2,439	23,193	4,181		
8	10,881	4,879	12,431	4,735	12,057	8,04		
16	5,507	9,64	6,311	9,327	6,151	15,758		
32	2,771	19,16	3,18	18,51	3,107	31,195		

ІССЛЕДОВАНИЯ

зирования» имеет три граничных условия: высота перицентра орбиты фазирования должна быть равна высоте рабочей ОИСЛ, наклонение орбиты фазирования должно быть равно наклонению рабочей ОИСЛ, эксцентриситет орбиты фазирования должен быть равен e_f .

Выбираемыми параметрами краевой задачи являются: момент времени подачи первого разгонного импульса t₁, величина первого разгонного импульса ΔV_1 , долгота восходящего узла опорной околоземной орбиты Ω_0 , аргумент широты КА в момент подачи первого импульса и₀, величина второго тормозного импульса скорости, прикладываемого в перицентре пролетной (относительно Луны) гиперболической тра
ектории ΔV_2 – всего пять параметров. Очевидно, что существует множество решений краевой задачи перелета, и из них необходимо выбрать наиболее оптимальное. В качестве минимизируемого функционала задачи будем рассматривать сумму импульсов скорости:

$$\Delta V_{\Sigma} = \Delta V_1 + \Delta V_2$$

Таким образом, задача перелета сведена к задаче поиска условного экстремума (минимума).

На рис. 1 представлена зависимость отлетного импульса ΔV_1 от момента времени t_1 – фактически от даты старта. Зависимость построена для эпохи начала 2020 года в диапазоне одного лунного месяца для трех случаев высоты перицентра орбиты фазирования.

Из данных, представленных на рис. 1, видим, что первый отлетный импульс для полета к Луне крайне слабо зависит от высоты перицентра орбиты фазирования (высоты рабочей ОИСЗ).

На рис. 2 представлена зависимость тормозного импульса ΔV_2 , прикладываемого в перицентре пролетной гиперболы в окрестности Луны, от t_1 – фактически от даты старта PH.

На рис. 3 представлена зависимость характеристической скорости маневра перелета на окололунную орбиту фазирования ΔV_{Σ} от даты старта.

Данные рис. 3 показывают, что наилучшей датой старта с точки зрения минимума характеристической скорости перелета является 12 февраля 2020 года. Также можно видеть, что высота рабочей ОИСЛ достаточно сильно влияет на характеристическую скорость.

 ΔV_{Σ} для оптимальной даты старта составляет:

- для *H* = 1000 км 3,867656 км/с;
- для *H* = 1500 км 3,837065 км/с;
- для *H* = 4260 км 3,761112 км/с.

Для оценки основных массовых характеристик космической транспортной системы были использованы следующие исходные данные:

- масса головного блока, выводимого РН на опорную околоземную орбиту: 8200 кг;
- конечная масса МТА, выполненного на основе РБ «Фрегат»: 1275 кг;

Рис. 1. Зависимость отлетного импульса ΔV_1 от даты старта

- максимальная масса заправляемого топлива МТА: 6550 кг;
- удельный импульс маршевой ДУ МТА: 333,2 с;
- удельный импульс ДУ КА: 255 с.

В табл. 3 представлены основные массовые характеристики рассматриваемой транспортной системы при использовании ОИСЛ различной высоты (H_{OUCT}). В таблице исполь-

зуются следующие обозначения: $V_{\rm XAP}$ – запас характеристической скорости МТА с учетом затрат на коррекцию перелетной траектории; $M_{\rm K}$ – масса транспортной системы, доставленной на орбиту фазирования; $M_{\rm T}$ – требуемая масса рабочего топлива МТА; $M_{\rm E}$ – масса полезной нагрузки МТА (масса блока КА, доставленного на орбиту фазирования).

Рис. 2. Зависимость тормозного импульса ΔV_2 прикладываемого в перицентре пролетной гиперболы в окрестности Луны, от даты старта

Рис. 3. Зависимость характеристической скорости маневра перелета на окололунную орбиту фазирования ΔV_{Σ} от даты старта

Проектно-баллистический анализ развертывания группировки спутников

Таблица 3

Массовые характеристики космической транспортной системы

Н _{ОИСЛ} , КМ	V _{XAP} M/C	М _т , кг	М _к , кг	М _ь , кг			
1000	3937,656	5742,7	2457,3	1182,3			
1500	3912,065	5723,3	2476,6	1201,6			
4260	3836,112	5665,1	2534,8	1259,8			

Итак, проанализировав три варианта развертывания группировки КА связи на ОИСЛ, оценив затраты характеристической скорости перелета ОИСЗ-ОИСЛ и затраты на перевод единичного КА в рабочую точку ОИСЛ, можно заключить, что суммарная характеристическая скорость перелета ОИСЗ-ОИСЛ для большинства дат старта не превышает 4 км/с, дата старта не сильно влияет на величину характеристической скорости перелета ОИСЗ-ОИСЛ. Более значительно на характеристическую скорость перелета влияет высота рабочей круговой ОИСЛ. В варианте с наибольшей высотой ОИСЗ (4260 км) выигрыш по массе блока составляет около 80 кг.

Затраты характеристической скорости единичного КА на приведение его в рабочую точку в случае, если располагаемое время фазирования достаточно велико (около 10 суток), незначительны – не превышают 10 м/с.

Библиографические ссылки

 Константинов М.С., Каменков Е.Ф., Перелыгин Б.П., Безвербый В.К. Механика космического полета / под ред. В.П. Мишина. М. : Машиностроение, 1989.

Статья поступила в редакцию 23.01.2014 г.