

А. А. Горчаковский, В. В. Евстратько, А. В. Мишуров, С. П. Панько, В. В. Сухотин

Сибирский федеральный университет, г. Красноярск, Россия

ПРИНЦИПЫ ПОСТРОЕНИЯ АВТОМАТИЗИРОВАННОЙ КОНТРОЛЬНО-ПРОВЕРОЧНОЙ АППАРАТУРЫ КОСМИЧЕСКИХ АППАРАТОВ

Аппаратура контроля сложного оборудования космических аппаратов, насыщенного электроникой, требует создания автоматизированных специализированных устройств, работающих по ранее разработанным сценариям. В работе описана контрольно-проверочная аппаратура для проведения приемосдаточных и предстартовых испытаний космических аппаратов.

Ключевые слова: автоматизация испытаний, сложное оборудование, система телеизмерений.

A. A. Gorchakovsky, V. V. Evstratko, A. V. Mishurov, S. P. Panko, V. V. Sukhotin

Siberian Federal University, Krasnoyarsk, Russian Federation

THE PRINCIPLES OF AUTOMATION CONTROL AND TEST EQUIPMENT FOR SPACECRAFT

Monitoring equipment for complex equipment of the spacecraft, a busy electronics requires automated creation of specialised devices operating according to previously developed scenarios. This paper describes testing equipment for conducting acceptance and pre-launch testing of the spacecraft.

Key words: automation testing, sophisticated equipment, system of telemetry.

Процессы производства, приемосдаточных и промежуточных испытаний, а также эксплуатации сложного высокотехнологического оборудования, работающего в автономных и достаточно агрессивных условиях, требуют многократной дистанционной проверки работоспособности узлов и подсистем на соответствие техническим условиям. К такому оборудованию относятся космические аппараты (КА) и, в первую очередь, командно-измерительные системы (КИС КА) бортового базирования. Теория и практика контрольнопроверочной аппаратуры разработаны достаточно глубоко, но появление новых технических средств позволяет повысить эффективность упомянутых выше процессов, в первую

очередь, с позиций автоматизации испытаний [1-3].

Функции КПА КИС КА легко просматриваются из обобщенной схемы информационного взаимодействия КА и наземного комплекса управления (НКУ) по рис. 1.

По радиолинии uplink на КА передаются команды управления узлами и подсистемами КА, формируемые персоналом НКУ или автоматически в соответствии с программой полета. Сигналы, принятые приемной антенной ПРМА, стандартно обрабатываются приемником ПРМ и дешифрируются для исполнения. С помощью передатчика ПРД и передающей антенны по радиолинии downlink в НКУ передаются телеметрические данные, квитанции о приеме и исполнении команд и информация для определения параметров орбиты по каналу КПИПО.

[©] Горчаковский А. А., Евстратько В. В., Мишуров А. В., Панько С. П., Сухотин В. В., 2015

Принципы построения автоматизированной контрольно-проверочной аппаратуры космических аппаратов

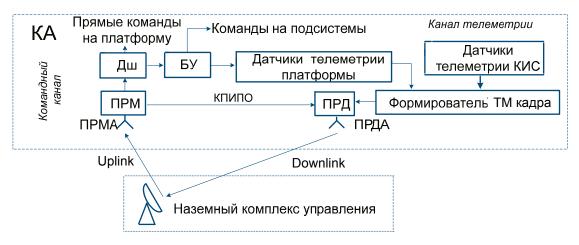


Рис. 1. Структурная схема операционного взаимодействия между КА и НКУ

Известные попытки создания универсальной КПА [5; 6], рассчитанной на широкий класс однотипного оборудования, например, космических аппаратов или станций спутниковой связи, указывают на необходимость разработки индивидуальной КПА, поскольку широкое разнообразие номенклатуры исследуемых параметров приводит к значительному усложнению программно-аппаратной основы КПА, т.е. высокой стоимости.

Ниже описаны общие принципы создания КПА, направленной на создание автоматизированного комплекса испытаний геостационарных КА [7].

Система управления узлами и функциями КА и телеметрической связи КА имеет разветвленные модули, распределенные по всему КА, которые объединены с узлом центрального управления и процессором обработки данных по последовательному интерфейсу. Много функций и аппаратных средств КА выполнено на аналоговом уровне, что также должно контролироваться в процессе испытаний. На рис. 2 приведена структурная схема взаимодействия КПА и КА.

Посредством персонального компьютера оператора ПКО в ручном или автоматическом режиме вводятся директивы, циклограммы проверки параметров узлов и систем КА, а также формируются протоколы испытаний. На сервере хранится программное обеспечение функциональных процедур и результаты испытаний. Адресный коммутатор цифровых потоков типа Ethernetswitch, VXIbus, PXIbus или т.п. Измеритель мощности ИМ, измеритель частоты ИЧ и анализатор спектра АС используются по прямому назначению для измерения параметров принимаемого радиосигнала. В блоке БКСИ производится контроль сопротивления изоляции, а в блоке БИС - сопротивление между бортовыми шинами питания ШП КА. Управляемые аттенюаторы УА1 и УА2 используются с целью имитации условий работы с большим ослаблением радиосигнала на реальной трассе сигнала при испытаниях в непосредственной близости КПА и КА. Радиосигналы, переносящие команды и полетную информацию, передаются по цепи: передатчик ПРД, второй управляемый аттенюатор УА2, передающая антенна ПРДА.

31

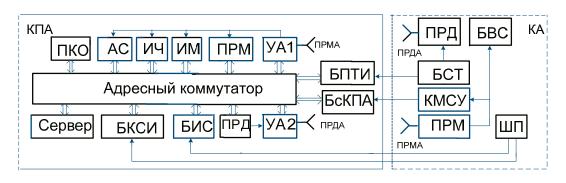


Рис. 2. Структурная схема КПА [7]

В состав КА штатно входят: приемник ПРМ и передатчик ПРД с соответствующими антеннами, командная матрица системы управления бортовой аппаратурой КМСУ, бортовая система телеизмерений БСТ, телеметрия с которой передается ПРД и контролируется по технологическому каналу передачи в БПТИ — блоке получения телеметрической информации; бортовая вычислительная система БВС.

Одиночными проводами указаны однопроводные линии передачи аналоговых сигналов. Остальные связи обеспечиваются цифровыми мультиплексными двунаправленными соединениями.

Команды управления поступают на КА через блок сопряжения БсКПА с командной матрицей системы управления бортовой аппаратурой КА КМСУ. Система бортовых телеизмерений КА – блок БСТ – соединяется с КПА через блок связи БСТИ.

Соединения БСТ — БПТИ, БсКПА — КМСУ, ШП — БКСИ, БИС осуществляются через технологические разъемы. Такая организация информационного взаимодействия КПА с КА совместно с использованием штатных радиоканалов позволяет повысить скорость и глубину производимых испытаний параметров КА.

Библиографические ссылки

1. Описание векторного генератора сигналов Agilent Technologies MXG5182B [Электронный ресурс]. Режим доступа: http://www.home.agilent.com/ru/pd-

- 2115999-pn-N5182B/mxg-x-series-rfvector-signal-generator (свободный).
- Описание цифрового осциллографа Agilent Technologies DSO9404A. [Электронный ресурс]. Режим доступа: http://www.home.agilent.com/ru/pd-1632456-pn-DSO9404A/oscilloscope-4-ghz-4- analogchannels (свободный).
- Крат Н. М., Савин А. А., Шарыгин Г. С. Контрольнопроверочная аппаратура системы автономной навигации космических аппаратов // Доклады ТУСУРа. № 1 (31), март 2014. С. 28–32.
- Белевич А., Белов В., Брусиловский В., Пожидаев В. Контрольно-проверочная аппаратура оптико-электронного телескопического комплекса // Современные технологии автоматизации. № 3. 2006. С. 44–50. Режим доступа: www.cta.ru.
- Автоматизированная испытательная система для отработки, электрических проверок и подготовки к пуску космических аппаратов: пат. № 2245825 Рос. Федерация / Зеленщиков Н. И., Кашицин М. П. [и др.]. Опубл. 10.02.2005. Бюл. № 4.
- 6. Способ электрических проверок космического аппарата: пат. № 2513322 Рос. Федерация / Коротких В. В., Лесковский А. Г., Опенько С. И. Опуб. 20.04.2014. Бюл. № 11.
- 7. Контрольно-проверочная аппаратура космического аппарата: пат. № 2563925 Рос. Федерация, МПК B64G 5/00, G01R 31/00. № 2014118450/11 / Горчаковский А. А., Евстратько В. В., Мишуров А. В., Панько С. П., Рябушкин С. А., Сухотин В. В., Шатров В. А., Петренко В. Л.; заявл. 06.05.2014; опубл. 27.09.2015.

Статья поступила в редакцию 16.10.2015 г.