Article


Cover

№3 2018

Title

SH-synthesis of TiB2-MgAl2O4 composites for heatresistant coatings

Authors

N.I. Afanasyev, N.I. Radishevskaya, O.K. Lepakova, A.Yu. Nazarova, W.D. Kitler

Organization

Tomsk Scientific Centre SB RAS, Tomsk, Russian Federation


Abstract

Metal borides are known to be widely used as heat-insulating materials, but their efficiency significantly reduces under high-temperature oxidizing conditions. To increase the heat resistance of structural materials based on titanium diboride and prevent the growth of TiB2 crystals, chemically-resistant refractory magnesium-aluminate spinel was used. The purpose of this work was to study the structure of the TiB2-MgAl2O4 composite obtained by the method of self-propagating high-temperature synthesis using two approaches. The first approach is the self-propagating high-temperature synthesis of titanium diboride from its elements with the addition of magnesium-aluminate spinel. Another approach to the obtaining of a heatresistant composite material is the self-propagating high-temperature synthesis of magnesium-aluminate spinel with the addition of titanium diboride. The best results were obtained using the first approach. A structure with a uniform distribution of fine TiB2 grains was synthesized by adding 25 % wt. MgAl2O4. The compositions were investigated using X-ray diffraction (DRON-3M, filtered Cu-kα-radiation), IR spectroscopy (Nicolet 5700) and scanning electron microscopy (Philips SEM 515). The obtained material was a composite in which TiB2 particles with a size not exceeding 5 microns were uniformly distributed in the matrix of magnesium-aluminate spinel.

Keywords

titanium diboride, magnesium-aluminate spinel, self-propagating high-temperature synthesis, composites

References

[1] Horoshavin L.B. Shpinelidnye nanoogneupory [Spinel Nanorefractory Materials]. Ekaterinburg, UB RAS, 2009, 600 p. (In Russian)

[2] Omid E. K., Naghizadeh R., Rezaie H. R. Synthesis and comparison of MgAl2O4-Ti(C, N) composites using aluminothermic-carbothermal reduction and molten salts routes // Journal of Ceramic Processing Research, 2013, vol. 14, no. 4, pp. 445–447.

[3] Zaki Z. I, Ahmed Y. M. Z., Abdel-Gawad S. R. In-situ synthesis of porous magnesia spinel/TiB2 composite by combustion technique // Journal of the Ceramic Society Japan, 2009, vol. 117 (1366), pp. 719–723.

[4] Horvitz D., Gotman I. Pressure-assisted SHS synthesis of MgAl2O4-TiAl in Situ composites with interpenetrating networks // Acta Materialia, 2002, vol. 50, no. 8, pp. 1961–1971.

[5] Merzhanov A. G. Processy goreniya i sinteza materialov [Processes of Burning and Materials Synthesis]. Chernogolovka, ISMAN, 1998, 511 p. (In Russian)

[6] Samsonov G. V., Bulankova T. G., Burykina F. L., Znatokova T. N. Fiziko-himicheskie svojstva okislov [Physicalchemical properties of oxides]. Metallurgy, 1969, 456 p. (In Russian)

[7] Ruzinov L. P., Gulyanitzkii B. S. Ravnovesnye prevrashcheniya metallurgicheskih reakcij [Equilibrium transformation of metallurgical reactions]. Metallurgy, 1975, 416 p. (In Russian)

[8] Barabanov V. F., Goncharov G. N., Zorina M. L. Sovremennye fizicheskie metody v geohimii [Modern Physical Methods on Geochemistry]. Leningrad University, 1990, 390 p. (In Russian)

[9] Chernyakova K. V., Vrubelevskii I. A., Ivanovskaya M. I., Kotikov D. A. Primesno-defektnaya struktura anodnogo oksida alyuminiya, sformirovannogo metodom dvustoronnego anodirovaniya v rastvore vinnoj kisloty [Defective structure of anode alumina oxide, formed by method of bilateral anodic oxidation] // J. Appl. Spectrosc, 2012, vol. 79, no. 1, pp. 83–89. (In Russian)

[10] Solodkii E. N., Solodkii N. F. Prichiny okrashivaniya korundovoj keramiki [Reasons for coloring corundum ceramics] // Glass Ceram, 2000, no. 11, pp. 24–26. (In Russian)

[11] Nakamoto K. IK-Spektry i Spektry KR Neorganicheskikh i Koordinatsionnykh Soedinenii [Infrared and Raman Spectra of Inorganic and Coordination Compounds]. Mir, 1991, 536 p. (In Russian)

[12] Blank V. D., Estrin E. I. Fazovye prevrashcheniya v tverdyh telah pri vysokom davlenii [Phase transformations in solids at high pressure]. Moscow, Fizmatlit, 2011, 412 p. (In Russian)

[13] Lidin R. A., Molochko V. A., Andreeva L. L. Neorganicheskaya himiya v reakciyah [Inorganic chemistry in reactions]. Moscow, Drofa, 2007, 637 p. (In Russian)

[14] Balicheva T. G., Lobaneva O. A. Elektronnye i kolebatel'nye spektry neorganicheskih i koordinacionnyh soedinenij [Electronic and vibrational spectra of inorganic and coordination compounds]. Leningrad, Leningrad State University, 1983, 117 p. (In Russian)

[15] Lavrenov A. V., Bulychevsky E. A., Karpova T. R., Moiseenko M. A. Sintez, stroenie i svojstva komponentov motornyh topliv [Synthesis, structure and properties of components of motor fuels] // Chemistry in the interests of sustainable development, 2011, vol. 19, no. 1, pp. 87–95. (In Russian)

[16] Perovskit. Available at: http://natural-museum.ru/mineral/perovskite (accessed 13.09.2018).



For citing this article

Afanasyev N.I., Radishevskaya N.I., Lepakova O.K., Nazarova A.Yu., Kitler W.D. SH-synthesis of TiB2-MgAl2O4 composites for heatresistant coatings // Spacecrafts & Technologies, 2018, vol. 2, no. 3, pp. 157-164. doi: 10.26732/2618-7957-2018-3-157-164


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).