№3 2018


Plant for molecular beam epitaxy «Katun-100»


1V.V. Blinov, 1V.I. Mashanov, 1,2A.I. Nikiforov, 1D.N. Pridachin, 1D.O. Pchelyakov, 1,2O.P. Pchelyakov, 1L.V. Sokolov, 1V.P. Titov


1Rzhanov Institute of Semiconductor Physics SB RAS
Novosibirsk, Russian Federation
2Tomsk State University
Tomsk, Russian Federation


One of the most promising technologies in semiconductor electronics is molecular beam epitaxy, which is a successive deposition on the semiconductor substrate of layers of atomic thickness of various materials from molecular beams in ultra-high vacuum (residual gas pressure less than 10–8 Pa). During this process (in situ), molecular beams and nanoheterostructures are diagnosed. Creation of high-performance micro-, nano- and photoelectronics devices based on semiconductor nanoheterostructures consisting of III-V compounds grown on cheap Si substrates is one of the priorities of modern semiconductor materials science. The solution this problem is extremely important for the development of high-performance photovoltaics. Modern high-performance solar cells are complex multilayer heterosystems with an efficiency of up to 45 % at a concentration of solar radiation in several hundred suns. They consist of three main p-n junctions made of Ge, InGaAs, InGaP connected in series by tunnel diodes. This article presents an automated compact plant of new generation of molecular beam epitaxy for epitaxy of films and nanostructures based on Si, Ge and (or) compounds of A3B5 type, developed at the Rzhanov Institute of Semiconductor Physics of the Siberian Branch of RAS.


molecular beam epitaxy, semiconductor nanoheterostructures, solar cells, ultrahigh vacuum, space materials science


[1] New equipment for molecular beam epitaxy. Available at: (accessed: 22.08.2018).

[2] Valiev K. A., Orlikovsky A. A. Tekhnologii SBIS: osnovnye tendencii razvitiya [VLSI Technologies: Main Development Trends] // Electronics: Science, Technology, Business, 1996, no. 5–6, pp. 3–11. (In Russian)

[3] Hueser J. E., Brock F. J. Theoretical analysis of the density within an orbiting molecular shield // J. Vac. Sci. Technol., 1976, vol. 13, no. 3, pp. 702–710.

[4] Melfi L. T., Outlaw R. A., Hueser J. E, Brock F. J. Molecular shield: An orbiting low-density materials laboratory // J. Vac. Sci. Thechnol., 1976, vol. 13, no. 3, p. 698.

[5] Ignatiev A. The Wake Shield Facility and Space-Based Thin Film Science and Technology // Earth Space Review, 1995, no. 4, p. 10.

[6] News Briefs // Compound semiconductors, 1997, no. 1, p. 11.

[7] Neu G., Teisserire M., Freundlich A., Horton C., Ignatiev A. // Appl. Phys. Lett., 1999, vol. 74, no. 22, pp. 3341–3343.

[8] Berzhaty V. I., Zvorykin L. L., Ivanov A. I., Pchelyakov O. P., Sokolov L. V. Perspektivy realizacii vakuumnyh tekhnologij v usloviyah orbital'nogo poleta [Prospects for the implementation of vacuum technologies in orbital flight conditions] // Journal of surface investigation. X-Ray, sunchrotron and neutron techniques, 2001, no. 9, pp. 63–73. (In Russian)

[9] Ignatiev A., Freundlich A., Pchelyakov O., Nikiforov A., Sokolov L., Pridachin D., Blinov V. Molecular Beam Epitaxy in the Ultravacuum of Space: Present and Near Future // From Research to Mass Production, 2018, pp. 741–749. doi: 10.1016/B978-0-12-812136-8.00035-9

[10] Pchelyakov O. P., Dvurechensky A. V., Latyshev A. V., Aseev A. L. Ge/Si heterostructures with coherent Ge quantum dots in silicon for applications in nanoelectronics // Semiconductor Science and Technology, 2011, vol. 26, no. 1, pp. 14–27. doi: 10.1088/0268-1242/26/1/014027

For citing this article

Blinov V.V., Mashanov V.I., Nikiforov A.I., Pridachin D.N., Pchelyakov D.O., Pchelyakov O.P., Sokolov L.V., Titov V.P. Plant for molecular beam epitaxy «Katun-100» // Spacecrafts & Technologies, 2018, vol. 2, no. 3, pp. 170-174. doi: 10.26732/2618-7957-2018-3-170-174

Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).