Article


Cover

№1 2020

Title

Modified formulas for maximum deflection of a cantilever under transverse loading

Authors

1D.M. Zuev, 2K.G. Okhotkin

Organizations

1Reshetnev Siberian State University of Science and Technology
Krasnoyarsk, Russian Federation
2JSC Academician M. F. Reshetnev Information Satellite Systems
Zheleznogorsk, Krasnoyarsk region, Russian Federation

Abstract

Modern problems of aerospace industry require consideration of rods experiencing large deflections. The example of such a problem is development of large scale deployable umbrellatype antennas where rods are structural elements. Development of modern analytic methods in the field of solid mechanics allows to model rod bend shapes and to find expressions for maximum deflection. In addition, the analytic methods make it possible to find a full system of solution branches and all possible equilibrium shapes without significant time-consuming for numerical simulations. Wherein relatively simple methods for determining bending shapes in case of large deflections have significant importance for applied use. Namely, they can be used for preliminary design of complex rod constructions. The paper presents the method for obtaining of modified analytic formulas that enable to determine large deflections of a thin elastic cantilever under transverse loading. The method uses a rod’s arc-length saving condition which is important for applied use. The modified formulas allow to achieve accuracy comparable with exact nonlinear solutions given in terms of elliptic integrals and functions. That fact expands the loading range where the linear theory can be used. The authors considered the following cases: concentrated transverse loading on the free end and combined loading (uniformly distributed loading and concentrated transverse loading on the free end). The comparison with experimental data proved accuracy of the proposed method. In addition, the authors obtained approximate formulas based on the modified formulas. The approximate formulas can be use for engineering applications.

Keywords

geometrical nonlinearity, large deformations, cantilever, Euler elastic

References

[1] Lopatin A. V., Zakharov Yu. V., Okhotkin K. G., Vil'yanen V. V., Pashkovskiy A. V. Geometricheski nelineynaya model' transformiruemogo oboda bol'shoy kosmicheskoy antenny s gibkimi kompozitnymi elementami [Geometrically nonlinear model of transformable rim of large space antenna with flexible composite elements] // Vestnik SibGAU, 2012, vol. 5, no. 45, pp. 75-80. (In Russian)

[2] Sato Yu., Kim S., Kusakawa Y., Shimizu K., Tanaka T., Komatsu M., Lambert C., Nakasuka S. Extensible Flexible Optical System for Nano-scale Remote Sensing Satellite «PRISM» // Transaction. of Japan Soc. for Aero. and Space Sciences, Space Tech, 2009, vol. 7, pp. 13-18. doi: 10.2322/tstj.7.Tm_13

[3] Howell L. L. Compliant Mechanisms // 21st Century Kinematics. London, Springer, 2013, pp. 189-216. doi: 10.1007/978-94-017-9780-1_302

[4] Fowler R. M., Howell L. L., Magleby S. P. Compliant space mechanisms: A new frontier for compliant mechanisms // Mech. Sci., 2011, vol. 2, no. 2, pp. 205-215. doi: 10.5194/ms-2-205-2011

[5] Galileo Galilej. Besedy i matematicheskie dokazatel'stva, kasayushchiesya dvukh novykh otrasley nauki [Galileo Galiley. The Discourses and Mathematical Demonstrations Relating to Two New Sciences] // Galileo Galiley. Izbrannye trudy, Moscow, Nauka, 1964. pp. 109-410. (In Russian)

[6] Goss V. G. A. The History of the Planar Elastica: Insights into Mechanics and Scientific Method // Sci & Educ., 2009, vol. 18, no. 8, pp. 1057-1082.

[7] Batista M. Analytical treatment of equilibrium configurations of cantilever under terminal loads using Jacobi elliptical functions // Int. J. Solids Struct., 2014, vol. 51, no. 13, pp. 2308-2326. doi: 10.1016/j.ijsolstr.2014.02.036

[8] Zakharov Yu. V., Okhotkin K. G. Nelinejnyj izgib tonkih uprugih sterzhnej [Nonlinear bending of thin elastic rods] // Journal of Applied Mechanics and Technical Physics, 2002, vol. 43, no. 5, pp. 739-744. (In Russian)

[9] Scarpello G. M., Ritelli D. Exact Solutions of Nonlinear Equation of Rod Deflections Involving the Lauricella Hypergeometric Functions // International Journal of Mathematics and Mathematical Sciences, 2011, vol. 2011, Article ID 838924. doi: 10.1155/2011/838924

[10] Zakharov Yu. V., Zakharenko A. A. Dinamicheskaja poterja ustojchivosti v nelinejnoj zadache o konsoli [Dynamic instability at a nonlinear problem of a cantilever] // Computational technologies, 1994, vol. 4, no. 1, pp. 48-54. (In Russian)

[11] Zakharov Yu. V., Okhotkin K. G., Vlasov A. Yu. Priblizhennye formuly dlya strely progiba uprugogo sterzhnya pri poperechnom nagruzhenii [Approximate formulas for sagging deflection of an elastic rod under transverse loading] // J. Appl. Mech. Tech. Phys., 2002, vol. 43, no. 5, pp. 745-747. (In Russian)

[12] Ang M. H. J., Wei W., Teck-Seng L. On the estimation of the large deflection of a cantilever beam // Proc. IECON ’93 - 19th Annu. Conf. IEEE Ind. Electron, 1993, pp. 1604-1609. doi: 10.1109/IECON.1993.339311

[13] Timoshenko S. P., Gere G. Mechanica materialov [Mechanics of materials]. Moscow, Lan’, 2002. 627 p. (In Russian)

[14] Anfilov'ev A. V. Teoriya «malykh» i «bol'shikh» iskrivleniy sterzhney v obshchem analiticheskom predstavlenii [Theory of small and large deflections in general analytic representation] // Izvestiya Tomskogo politekhnicheskogo universiteta, 2007, vol. 310, no. 2, pp 55-59. (In Russian)

[15] Vardanyan G. S., Andreev V. I., Atarov N. M., Gorshkov A. A. Soprotivlenie materialov s osnovami teorii uprugosti teorii i plastichnosti [Strength of materials with fundametnals of elasticity and plasticity theory]. Moscow, ACB, 1995, 572 p. (In Russian)

[16] Zuev D. M., Zakharov Yu. V. Strela progiba konsoli sosredotochennoj poperechnoj siloj. Modifikaciya linejnoj teorii [Sagging deflection of cantilever loaded with a transversal load. Modification of linear theory] // Reshetnev readings : materials of the XX International scientific-practical conference, Krasnoyarsk, 2016, vol. 2, pp. 131-133. (In Russian)

[17] Belendez T., Neipp C., Belendez A., Numerical and Experimental Analysis of a Cantilever Beam: A Laboratory Project to Introduce Geometric Nonlinearity in Mechanics of Materials // Int. J. Eng. Educ., 2003, vol. 19, no. 6, pp. 885-892.

[18] Zuev D. M. Strela progiba konsoli pod dejstviem poperechnoj sosredotochennoj nagruzki. Priblizhennye formuly dlya modifikacii linejnoj teorii [Sagging deflection of cantiliever loaded with a transerversal load. Approximate formulas for modification of linear theory] // Proc. of Aktual'nye problemy aviatsii i kosmonavtiki, Krasnoyarsk, 2018, vol. 1, pp. 294-296. (In Russian)



For citing this article

Zuev D.M., Okhotkin K.G. Modified formulas for maximum deflection of a cantilever under transverse loading // Spacecrafts & Technologies, 2020, vol. 4, no. 1, pp. 28-35. doi: 10.26732/j.st.2020.1.04


Creative Commons License
This Article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).